

J Optimizer 1.0 User Guide

Copyright © 1994-2009 Embarcadero Technologies, Inc.

Embarcadero Technologies, Inc.
100 California Street, 12th Floor
San Francisco, CA 94111
U.S.A. All rights reserved.

All brands and product names are trademarks or registered trademarks of their respective owners. This software/documentation
contains proprietary information of Embarcadero Technologies, Inc.; it is provided under a license agreement containing restrictions
on use and disclosure and is also protected by copyright law. Reverse engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it is delivered
with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the Department of Defense, then it is delivered
with Restricted Rights, as defined in FAR 552.227-14, Rights in Data-General, including Alternate III (June 1987).

Information in this document is subject to change without notice. Revisions may be issued to advise of such changes and additions.
Embarcadero Technologies, Inc. does not warrant that this documentation is error-free.

J Optimizer User Guide
Contents
1. Overview of J Optimizer

1.1. How to Get Started
1.2. Tour of the J Optimizer UI
1.3. About Using the Profile Configuration Wizard
1.4. What's New in J Optimizer 2009
1.5. Supported Technologies, Servers and Platforms

2. Using the Memory Profiler
2.1. Creating a Memory Profile Configuration
2.2. Setting Filter Conditions
2.3. Analyzing Application Quality
2.4. Configuring Metrics Collection
2.5. About Unit Test Profiling

3. Using the CPU Profiler
3.1. Creating a CPU Profile Configuration
3.2. Setting Filter Conditions
3.3. Analyzing Application Quality
3.4. Configuring Metrics Collection
3.5. About Unit Test Profiling

4. Using Code Coverage
4.1. Creating a Code Coverage Profile Configuration
4.2. Setting Filter Conditions
4.3. Generating a Code Coverage Report

5. Using Thread Debugger
5.1. Creating a Thread Debugger Profile Configuration
5.2. Identifying Thread Problems

6. Using Request Analyzer
6.1. Creating a Request Analyzer Profile Configuration
6.2. Using the JEE Quality Analyzer
6.3. Setting Filter Conditions
6.4. Configuring Metrics Collection
6.5. Viewing Individual JEE Component Performance Details

7. Profiling from a Command Line
7.1. Setting Environment Variables
7.2. Editing the Configuration File
7.3. Selecting and Issuing a Startup Argument
7.4. Setting up the Command Line Tool Selector
7.5. Attaching to the UI to View Profiling Data

8. About Profiling and Integrating an Application Server
8.1. Using a Wizard to Profile an Application Server

9. Viewing and Using the Data Collected by J Optimizer
9.1. About Data Views
9.2. About Snapshots
9.3. About Collecting VM Metrics
9.4. About Reports
9.5. About Exporting Data
9.6. Viewing Console Output

Welcome to Stand-alone J Optimizer 2009. Stand-alone J Optimizer provides full profiling cability without requiring integration into an
IDE or another, larger development environment. Touchpoint J Optimizer is an optional integration plug-in that is packaged with
Stand-alone J Optimizer and enables developers to use the J Optimizer profiling tools from within their own Eclipse-based application or
environment. Touchpoint J Optimizer does not have a graphical user interface (GUI). You do not need to use Touchpoint J Optimizer in
order to use Stand-alone J Optimizer.

1 of 40 Copyright Embarcadero Technologies, Inc.

In addition, Stand-alone J Optimizer 2009 includes the Source Code Audit and Metrics tool.

1. Overview of J Optimizer
J Optimizer equips Java developers with a comprehensive toolkit for optimizing application performance and quality. You can use J
Optimizer to profile memory and CPU usage, display real-time threading information, and determine which parts of your code are actually
being executed. You can also track performance bottlenecks at the JDBC, JMS, JNDI, JSP, EJB, CCI, and Web Services levels, and locate
the exact line of source code for root-cause analysis.

You can profile a number of different Java programs using J Optimizer. For a complete list of the programs you can profile, see the How to
Get Started Help page.

J Optimizer consists of four profiling tools: Profiler, Code Coverage, Thread Debugger, and Request Analyzer. Each tool has its own
data-collecting Agent. For example, the Request Analyzer Agent collects data about JEE protocols, while the Code Coverage Agent collects
data on code use. You can launch only one profiling tool at a time.

About the J Optimizer Profiling Tools
The table below summarizes the purpose of each profiling tool. For more detailed information about a tool, click on the tool's name in the
Tool column. This takes you to a group of Help topics about that tool.

Tool Purpose

Profiler Use the Profiler to examine memory and CPU use in the target application. The Profiler can identify memory leaks, inefficient temporary-
storage issues, CPU bottlenecks, and unit test performance regressions.

Code
Coverage

Use Code Coverage to to identify and analyze the classes, methods and lines of code that are being executed when your target
application runs. You can test applications, applets, JavaBeans, Enterprise JavaBeans (EJBs), JavaServer Pages (JSPs)and virtually any
other Java code. J Optimizer to identify and remove dead code, improve quality, and improve the application's footprint.

Thread
Debugger

Use the Thread Debugger to identify and analysize thread-contention issues, thread-starvation, excessive locking, deadlocks, and other
thread-related issues.

Request
Analyzer

Use the Request Analyzer to carry out a CPU performance analysis of JEE protocols. You can obtain precise drill-down information
about performance bottlenecks in any one of JDBC, JNDI, CCI, RMI, EJB, JSP, JMS, or WSVC protocols. This tool also provides
protocol-specific quality analysis of unclosed or overused resources, exceptions, and other potential issues.

Note: All J Optimizer Agents can profile JEE applications. However, only the Request Analyzer can collect data for JEE-related events such as
the activation or passivation of specific EJBs.

How J Optimizer works with a Java Virtual Machine
The J Optimizer profiling tools work with either of the two standard profiling interfaces that a Java Virtual Machine (JVM) might support: the
Java Virtual Machine Profiling Interface (JVMPI) or the Java Virtual Machine Tool Interface (JVMTI). The J Optimizer tool collects data from
the virtual machine through JVMPI or JVMTI callbacks. You can specify a VM when you create a profile configuration in the J Optimizer user
interface, or, if you do not have access to the Optimizer UI, from a command line. J Optimizer can also request specific event notification,
based on options you specify.

The figure below illustrates how a J Optimizer profiling agent collects data from within the same VM that is running the Java program, then
displays it in the Optimizer UI.

Note: A TPTP connection can only be used with the JBuilder plug-in version of J Optimizer.

Related Topics

2 of 40 Copyright Embarcadero Technologies, Inc.

Tour of the J Optimizer User Interface (UI)
About Using J Optimizer from a Command Line

1.1. How to Get Started with J Optimizer
Your first step to profiling with J Optimizer is to select a mode of use. You can use J Optimizer in the following ways:

From the Graphical User Interface (UI):

If you are using the JBuilder plugin or stand-alone versions of J Optimizer, you can use the J Optimizer UI to select the profiling tool
you want to use, configure tool options, select the Java program you want to profile, launch the profiling tool, and view profiling
results.

Note: If you are using Touchpoint J Optimizer, you have plugged J Optimizer into an Eclipse application, and can use that application's UI
to create a profile configuration to select a tool and start profiling. Alternatively, you can use commands to perform these tasks. To
view profiling results, use the Stand-alone J Optimizer UI.

From a Command Line:

You can use commands to select the profiling tool you want to use, configure its attributes as desired, and start both the Java
program to profile and the profiling tool. You must connect to the J Optimizer UI to view profiling results.

Overview of J Optimizer Profiling Tasks
The following table provides an overview of the steps you take to configure and use the J Optimizer profiling tools. For details and instruction
on how to perform a step, click on a link in the step descriptions. For more information about each of the profiling tools, see the links in the
Related Topics section.

Step From the UI From a Command Line

1 Use the Profile Configuration Wizard to select:
--The Java program to profile.
--The profiling tool.
--Edit tool options if desired.
See your "About Using the Profile Configuration Wizard"
Help page for more information.

Configure your machine and application or server to work w
This typically involves setting environmental variables and e
config file. If you're using a TPTP connection, you'll take a
steps.

2 Use the Profile Configuration Wizard to start profiling.
See your "About Using the Profile Configuration Wizard"
Help page for more information.

Select and launch the startup argument and the profiling to

3 View profiling results. Attach to the J Optimizer UI and view profiling results. Inst
socket and TPTP connections are provided.

Types of Java Programs You Can Profile with J Optimizer
The following table describes the Java programs you can profile with J Optimizer:

Java Program Type Program Description J Opti for JBuilder Stand-alone J Opti Touchpoin

Attach - J Optimizer
Agent

Use to profile larger programs such as application
servers.

X X X

Eclipse Application Use to profile the Eclipse application and plug-ins that
you have created to work with Eclipse.

X X X

External Java Application Use to profile precompiled Java applications. X X X

Java Applet Use to profile Java applets created within X X X

Java Application Use to profile Java applications created within X X X

JUnit Use to profile JUnit tests. X X (external only) X

JUnit Plugin Test Use to profile JUnit test that are designed to profile
Eclipse plugins.

X X X

3 of 40 Copyright Embarcadero Technologies, Inc.

OSGI Framework Use to launch an OSGI framework and profile an
OSGI plug-in.

X - X

Web Client Use to profile a Web Client such as X - -

Web Service Use to profile a Web Service such as X - -

Related Topics
Overview of J Optimizer
About Memory Profiling
About CPU Profiling
About Code Coverage
About Thread Debugger
About Request Analyzer and JEE Profiling
About Profiling from a Command Line

1.2. Using J Optimizer from the UI
You can use the J Optimizer User Interface (UI) to perform the following profiling tasks:

Select and edit options for the profiling tool you want to use. You use a Profile Configuration Wizard to select and configure the tool.

Start profiling with the tool. You also use Profile Configuration Wizard to launch (i.e. start) the profiler.

View the data collected during the profiling process.

This Help topic shows you the UI location from which to launch each task. For instructions on how to perform the same tasks from a
command line, click here.

Tour of the J Optimizer UI
The image below identifies the primary elements of the J Optimizer UI. You use these elements to configure and launch a profiling tool, and
to view the data collected by each tool. Descriptions of each element follow the image.

1. The Profiling Monitor tab
Until you delete them, the Profiling Monitor tab lists all J Optimizer-enabled processes that are running or have been run. Each time you
launch a profile configuration, J Optimizer creates a new JVM process and displays the process in the Profiling Monitor. This means that one
launch configuration may have several processes displayed in this view. See the "Other UI Elements" section below for descriptions on the

4 of 40 Copyright Embarcadero Technologies, Inc.

icons and other options available on the Profiling Monitor tab.

You can also open snapshots in this view that you have saved from other sessions. Snapshots appear as a new profiling session.

Note: If you attach (Attach - J Optimizer Agent data collection option) to a process running outside the Workbench, it does not create a new
process and the PID displayed corresponds to the remote application.

2. The Navigator tab
Use the Navigator tab to locate and drill down into your JBuilder and J Optimizer projects. View class and source code information for each
project.

3. The Profile Configuration Wizard icon
Select the Profile Configuration icon to open the Profile Configuration Wizard. You use the profile configuration to specify a Java program
to profile, the J Optimizer profiling tool with which to profile it, and to start the profiler. You also use a profile configuration to modify the
settings for each tool to tailor profiling results. For example, you can configure the Request Analyzer to profile individual Java components, or
all of a program's Java components. In addition, all of the profilers except the Thread Debugger allow you include or exclude specific classes
during the profiling process. For more information, see the "About Using the Profile Configuration Wizard" Help page.

4. J Optimizer Data View tabs
The J Optimizer UI displays the data collected by each tool on separate tabs called "Views." A number of default views for each tool have
been created and appear in the main section of the J Optimizer perspective. J Optimizer also provides a number of additional views to
choose from. For a description of the views associated with each tool, click here.

5. J Optimizer Perspective button
If you are in a JBuilder perspective, click this button to display the J Optimizer perspective, which includes the default views and any other
views you select from the Show Views window.

6. The J Optimizer Output Console
The Output Console displays the results when you run an application or applet from the J Optimizer perspective.

7. J Optimizer Server Activity Display
The Server tab displays the output that results when you run an application server in the J Optimizer perspective.

Other UI Elements
Element Location and Purpose

Red X on a view tab On J Optimizer view tabs. Indicates that the J Optimizer view does not contain live data (the selected application is in a
terminated state)

Pause button and menu
option

Resides on the Profiling Monitor tab toolbar and right-click menu. This button is not unique to J Optimizer, but its
behavior is. In J Optimizer this button/option pauses the actual VM. It does not just pause polling (where the VM is still
running)

CPU Profiling recording icons
and menu options

Resides on the Profiling Monitor tab toolbar and right-click menu. Applies to the Profiler tool. Starts, stops, and sets
options for CPU recording.

Generate Snapshot
button/option

Resides on the Profiling Monitor tab toolbar and right-click menu. Applies only to Profiler, Code Coverage, and
Request Analyzer tools. Use to compare or share data.

J Optimizer Tool Selector icon The J Optimizer Tool Selector is used to start and configure remote or offline profiling sessions by those working from a
command line.

Related Topics
Overview of J Optimizer
About Using the J Optimizer Views

1.3. Using the Stand-Alone J Opti Profile Configuration
Wizard

5 of 40 Copyright Embarcadero Technologies, Inc.

J Optimizer provides a number of different settings for each profiling tool to help you tailor the data each tool collects. You specify these
settings in a Profile Configuration. You use the Profile Configuration Wizard to perform the following tasks:

Configure the profiling tool you want to use.

Start profiling with the tool. You can start profiling immediately after creating a profile configuration, or, after saving the configuration,
at another time.

When profiling completes, you can view the results in the J Optimizer UI using one of the data views provided for each tool. You can reuse a
profile configuration to profile the same Java program with a different tool by specifying the different tool.

Because configuration settings vary by tool, separate Help topics have been created for each tool and are listed in the Related Topics
section of this page. However, though the individual settings vary, the steps to open the wizard are the same for each tool and are provided
below.

Note: If you have Touchpoint J Optimizer plugged into an Eclipse application, you can create a profile configuration from the Eclipse UI using
the steps below. When profiling completes, you use Stand-alone J Optimizer to view profiling results.

Getting Started with the Profile Configuration Wizard
To open the Profile Configuration wizard:

Click on the Profile Configuration icon and select Profile Configurations, as shown below.

The Profile Configuration wizard opens.

1.

The left pane of the wizard displays the types of Java programs you can profile. Right-click on the type of program you want to
profile, and select New to create a new configuration. You can also use an existing configuration. In the sample image below, the Test
Class configuration, for an External Java Application, is selected.

Note: To profile a server application, you use the Attach - J/Optimizer Agent option in the left pane. For instructions on how to profile
a server application, click here.

2.

This opens a series of tabs in the right pane. To select a J Optimizer profiling tool, click the Profiling tab. 3.
Use the down-arrow in the Profiling Tool field to select a tool. In this example, the Request Analyzer is selected. Your tool selection
determines which other fields appear on the Profiling tab.

4.

6 of 40 Copyright Embarcadero Technologies, Inc.

Descriptions of the rest of the fields that appear on the Profiling tab after you select a tool are discussed in the Help pages listed in
the Related Topics section below. These Help pages also explain the additional options that appear when you click the Details
button on the Profiling tab. So, for example, for descriptions of the various CPU Profiler fields and options, click the Creating a CPU
Profile Configuration link below. For descriptions of the Code Coverage fields and options, click Creating a Code Coverage Profile
Configuration.

5.

Related Topics
Creating a Memory Profile Configuration
Creating a CPU Profile Configuration
Creating a Code Coverage Profile Configuration
Creating a Thread Debugger Profile Configuration
Creating a Request Analyzer Profile Configuration
Creating an Application Server Profile Configuration

1.4. What's New in J Optimizer 2009
Since the previous release, following are new features in this release:

Support for profiling on Solaris machines. J Optimizer now provides commands to support profiling on Solaris machines.
Branch support for Code Coverage. The J Optimizer Code Coverage tool now provides automatic branch coverage. Branch
coverage, sometimes known as "block" coverage, checks the testing status of each branch in a branching construct (such as an "if" or
"case" statement).
Stand-alone J Optimizer. Stand-alone J Optimizer provides full profiling capability without requiring integration into an IDE or a larger
development environment. Stand-alone J Optimizer also includes the Touchpoint J Optimizer executable. Touchpoint J Optimizer is
an integration plug-in that enables developers to use the J Optimizer profiling tools from within their own Eclipse-based development
environment or IDE. Touchpoint J Optimizer does not have a graphical user interface (GUI) and is not sold separately. Finally,
Stand-alone J Optimizer includes the Source Code Audit and Metrics tool.
New structure and content for J Optimizer online Help. The J Optimizer Help system has been redesigned to provide more
detailed instructions and easier access to the J Optimizer tools and options they want to use. Navigate through the J Optimizer Help
Table of Contents (TOC) to locate information by tool and function. Separate Help topics for Touchpoint J Optimizer are available from
the Help>Help Contents menu on your Eclipse application after you run the Touchpoint J Optimizer executable. The Source Code
Audit and Metrics tool help is available from the Help>Help Contents menu in Stand-alone J Optimizer

7 of 40 Copyright Embarcadero Technologies, Inc.

For more information about the stand-alone and Touchpoint versions of J Optimizer, please contact Embarcadero Technologies.

Related Topics
Overview of J Optimizer
How to Get Started with J Optimizer

1.5. Supported Technologies, Servers, Platforms, and host
IDEs

J Optimizer supports the following technologies, servers, platforms, and host IDEs that are specified in the following sections. J Optimizer
support is identified by version: stand-alone, the JBuilder and Eclipse plugin versions.

Supported Technologies
With J Optimizer, you can profile applications that conform to many Java standards, including:

Supported Technology Available for J Optimizer
for JBuilder

Available for Stand-alone J
Optimizer

Available for Touchp
Optimizer

J2SE 1.3, J2SE 1.4, J2SE 5.0 (1.5) and J2SE 6.0 (1.6) X X X

J2EE 1.4, Java EE 5 X X X

Supported Servers
J Optimizer supports integration with most of the leading commercial and open source Java application servers, including:

Supported Servers Available for J Optimizer
for JBuilder

Available for Stand-alone
J Optimizer

Available for Stand
J Optimizer Age

Apache Geronimo 1.1.1 and 2.0 X X X

Apache Tomcat 5.0, 5.5 and 6.0 X X X

BEA WebLogic Application Server 9.2, and 10.1 X X X

IBM WebSphere 6.1 (with EJB 3 feature pack) X X X

JBoss 4.0.5, 4.2, and 5.0 X X X

JBoss 3.2.6 X X -

Oracle Application Server 10.1.3.3 - - X

Sun Glassfish 2.0 X X X

Sun Glassfish 1.1 X X -

Jetty 6.1 - - X

Supported Platforms
You can use J Optimizer on machines using the following operating platforms:

Supported Platforms Available for J
Optimizer for JBuilder

Available for
Stand-alone J

Optimizer

Available for
Touchpoint J

Optimizer

Available fo
Stand-alone

Optimizer Ag

Microsoft Windows XP (SP3) X X X X

Microsoft Windows Vista (SP1) X X X X

Mac OS X (10.5) X X X X

Red Hat Enterprise Linux 5 X X X X

Solaris 10 SPARC - - - X

8 of 40 Copyright Embarcadero Technologies, Inc.

Supported host IDEs
You can install Touchpoint J Optimizer on the following IDEs:

Eclipse 3.3.2, and 3.4.1 Java and JEE editions
MyEclipse 6.6, and 7.0
IBM RAD 7.5

2. Overview of Memory Profiling
In the J Optimizer UI, the tool called "Profiler" can perform both Memory and CPU profiling (though not simultaneously). This Help page
provides an overview of memory profiling. For an introduction to CPU profiling, click here.

The Memory Profiler can assist you in minimizing temporary object allocations and in detecting memory leaks. Temporary object allocation
can slow down your application. Memory leaks are often caused by objects that continue to be referenced as the processes continue, so
they are still using resources.

You can use the Memory Profiler to display all allocated instances in real time, and to see precisely which method is responsible for object
allocations. The Memory Profiler also allows you to browse incoming and outgoing object references. Filters allow you to focus on relevant
classes. Once you determine which class is causing a problem, you can immediately view the source code. Garbage collection controls are
also provided. If desired, you can use API calls to invoke the Memory Profiler from within the program you are testing.

In short, you can use the Memory Profiler to:

Identify memory leaks by examining the memory heap and comparing different heap states.

Minimize temporary object allocations. Excessive temporary object allocations can cause the garbage collector to run every few
seconds. When running, the garbage collector slows down your Java program.

Minimize the number of instances required for a given operation, and therefore decrease the memory your program requires.

Reduce memory waste by making sure every object is garbage collected.

You can specify and launch the Memory Profiler from within a memory profile configuration.

Note: The Memory Profiler reports memory use in bytes (B), kilobytes (KB), and megabytes (MB).

Heap Memory
When you start your profiling session, the Memory Profiler opens in the Heap view. This view displays all classes and the number of
instances currently allocated. From this view you can mark the current instance count to see the instances allocated by a specific action in
your program. After you have identified a class with an excessive number of instances, you can view the allocation backtrack to identify the
code or the part of the program that is responsible for these allocations.

Garbage Collection
The Memory Profiler includes controls for garbage collection. From the Memory Profiler Heap view, you can study object allocations without
having the garbage collector removing instances. In this case, the garbage collector is not really disabled; however, the Heap view shows
you what would happen if the garbage collector was not running. You can also force the garbage collector to run immediately.

The Memory Profiler can also display:

The amount of memory that would be garbage collected if the selected reference is deleted.

References that are garbage collected only when memory is low.

References that are garbage collected even if memory is abundant.

References waiting in the finalizer queue to be garbage collected.

Memory Leaks
A memory leak prevents your program from reclaiming memory in the heap after it has finished using it. Memory leaks are often caused by
objects that continue to be referenced as processes continue. These objects are still using resources. With the Memory Leak Detector, you
can locate an object with numerous references and trace those references to locate the source of a memory leak.

About the Application Quality Analyzer
The Application Quality Analyzer (AQA) detects errors and warnings in the code being profiled. Types of errors reported include abnormal
container growth, inefficient StringBuffer use, abnormal garbage collection duration, exception locations, abnormal finalizer queue length, and
unclosed FileDescriptor objects. You can access AQA settings while creating or editing a CPU or Memory profile configuration.

9 of 40 Copyright Embarcadero Technologies, Inc.

Viewing Memory and CPU Metrics
The Virtual Machine (VM) Metrics analyzer returns class count, thread use, and heap size informance that helps you determine if a
performance problem is related to CPU, memory, or both. You can instruct J Optimizer to collect VM Metrics when you run the Memory or
CPU Profiler, or the Request Analyzer. For more information about collecting VM metrics, click here.

Related Topics
About CPU Profiling
Analyzing Application Quality
About Collecting VM Metrics
About Viewing Profile Results

2.1. Creating a Memory Profile Configuration
In the J Optimizer UI, the tool called "Profiler" can perform Memory and CPU profiling (though not simultaneously). This Help page
explains how to use Stand-alone J Optimizer to create a profile configuration that profiles memory data. For instructions on creating a CPU
profile configuration, see "Creating a CPU Profilie Configuration."

To create a new memory profile configuration:

Open the Profile Configuration wizard. 1.
In the left pane, choose the Java program you want to profile.2.
In the right pane, click the Profiling tab. 3.
Use the down-arrow in the Profiling Tool field to select the Profiler tool.4.
In the General options section, you can do the following:

Field name Description

Virtual Machine Name Change this name if desired. By default, J Optimizer creates a VM
name based on the selected profiling tool.

Pause after launch This option pauses the application before it executes the main method,
thereby providing time to study the program's launch phase.

Pause on exit When profiling a fast-running application, select this field to give the
profiling tool time to complete data collection after the application
stops running.

Enable audit API Select this option to allow control of profiling directly from your source
code.

5.

In the Configuration Overview section, ensure that Memory Profiling is selected, then click the Details button.This generates the
Configuration Details window.

6.

On Configuration Details, click Memory in the left pane to display Memory settings in the right pane.7.
In the right pane, change the following memory profiling settings as needed. Then click OK to save your changes and close the
Configuration Details window.

Field name Description

Enable Memory Profiling Enables the memory profiler to run.

Report Collected Objects By default, the memory profiler reports on the number of collected
objects. Deselect to disable this count.

Disable Garbage Collector Select to disable the garbage collector while the profiler is running.

Show Allocations Since
Mark

It can be useful to set a mark so that the Diff column shows all zeros.
This makes it easier to isolate the objects that are generated and of
interest to you.

Precision "Use Method Precison" is the default. Select "Use Line Precison" to
display the actual line number in your source code that is using the
CPU and generating the objects.

Object Instances/Sizes "Show Object Instances" is the default, and reports on the number of
objects currently allocated. Select "Show Object Size" to report on the
size (in bytes) of each object currently allocated.

8.

10 of 40 Copyright Embarcadero Technologies, Inc.

Report Freed/Live Objects "Report Only Live" is the default, and reports only objects that are that
are still in the heap and not garbage collected. Select "Report Only
Freed" to display only objects that are garbage-collection ready.
"Report Live and Freed" shows objects that are still in the heap, not
garbage-collected, and are garbage-collection ready.

This returns you to the Profiling tab, on which you can make the following additional selections:

Field name Description

Auto-start CPU This starts the CPU profile recording when you start the Profiler.

Quality Analyzer By default, the Profiler collects Quality Analyzer data during profiling.
Deselect this field if you don't want to receive this information. For
more about Quality Analyzer information, click here.

Show VM Metrics By default, the Profiler collects VM metrics during profiling. Deselect
this field if you don't want to receive these metrics. For more about
VM metrics, click here.

Use Filters J Optimizer automatically enables filter creation for use with the
Profiler. Deselect if you do not want to create filters. For more
information about creating and using filters, click here.

Auto-Capture Select this field to have J Optimizer generate snapshots during the
profiling process. For more information about the auto-capture feature,
click here.

Import Click this button to import and edit a saved profiling configuration.

Export Click this button to save this profile configuration and reuse it later as
an imported profile configuration.

Only launch the profiling
agent

Select this field if you plan to view profiling results on a separate
client.

9.

Click Apply to complete this profile configuration, or Profile to start profiling immediately.10.

What To Do Next
Use the J Optimizer viewing options to see and analyze the data collected by the profiling tool.

To edit a configuration, click on the Profile Configuration icon, then select the Profile Configurations option. This opens the wizard. In the left
pane, click on the configuration, then on the tabs that contain the fields you want to change.

Related Topics
Overview of Tool Configuration from the UI
About the Memory and CPU Tool
About Memory Profiling
About Viewing Profile Results
About the Profiling Quality Analyzer
Configuring VM Metrics

2.2. Setting Filter Conditions
Create a J Optimizer filter to group classes into one or more categories, or to eliminate a class from profiling results. Filters can identify the
memory and CPU usage that is associated with each class or group of classes in a filter. You can easily add and remove classes from a
filter.

You can set filters for the Memory and CPU Profiler, and the Code Coverage and Request Analyzer tools. This Help topic provides
instruction on how to create and edit filters from the J Optimizer user interface. For instructions on how to do so by modifying the J Optimizer
configuration file, click here.

11 of 40 Copyright Embarcadero Technologies, Inc.

Setting and Editing Filters from the UI
You can set and edit filters from within a Memory, CPU, Code Coverage, and Request Analyzer profile configuration.

To set or edit filters:

In a profile configuration, open the Configuration Details dialog window. 1.
In the left pane, click Filters. This makes filter-related fields available on the right side of the dialog.2.
Ensure that the Enable Filtering field is selected.3.
Click Add to create or edit a filter. 4.
On the Add Filter dialog, take the following actions, then choose OK.

Field name Description

Filter Element Name Specify a filter name.

Classes to Filter Choose Add to specify a filter pattern for each class.

Simplification Many of the J Optimizer Views display a backtrace tree of methods.
The Group option in the Simplification field allows you to "simplify"
these backtraces merging those that match the filter pattern into one
level, with the filter name as the displayed label. If you do not want to
simply the backtrace tree, keep the default value selected, which is
None.

Ignore CPU Usage Select if you do not want the CPU profiler to run.

Ignore Memory Usage Select if you do not want the memory profiler to run.

Combine filter patterns Specifies what to do if a filter pattern matches a given element. The
default is "Any of the listed classes," which means that if any of the
filter patterns match the listed class, they will be filtered. "All of the
listed classes" specifies that if all of the filter patterns match, they will
be filtered.

5.

When you have finished adding or editing filters, choose OK. This returns you to previous dialog window for the tool you are setting
up.

6.

Choose Finish. This returns you to the main Profile Configurations page. 7.
Choose Apply to save your changes, or Profile, to start profiling immediately. Use the appropriate view tabs to view the data
collected by the profiling tool. Results should reflect the filter patterns you set.

8.

2.3. Analyzing Application Quality
The Application Quality Analyzer is a J Optimizer feature that you can run with the Memory and CPU Profiler. The Application Quality
Analyzer detects errors and warnings in the code being profiled. The real-time validation routine checks your code for basic error conditions.

Specificially, the Application Quality Analyzer identifies the following types of errors and warnings:

Abnormal container growth

Inefficient StringBuffer use

Abnormal garbage collection

Exceptions thrown

Abnormal finalizer queue length

Unclosed file descriptor

Note: A different version of the Application Quality Analyzer can be launched from a Request Analyzer Profile Configuration. For more
information, click here.

Setting Quality Analyzer Options
You can set Application Quality Analyzer settings when you create or edit Memory or CPU profile configuration. After you activate the
Application Quality Analyzer settings and run the profile configuration, you can see the results in the Application Quality Analyzer data view.

12 of 40 Copyright Embarcadero Technologies, Inc.

To set Quality Analyzer options:

In the left pane of the Configuration Details window, select Quality Analyzer. The Quality Analyzer fields appear in the right pane.1.
In the right pane, change the following settings as needed. Then click OK to save your changes and return to the J Optimizer Profiler
dialog.

Field name Description

Enable Quality Analyzer Select to enable Quality Analyzer data collection.

Finalizer Queue Length Specify a maximum Finalizer Queue Length. An error is reported when
the queue length is exceeded. This may indicate, for example, that the
finalize () method is overused in your code. The default value is 1000.

Pause Delay Specify a maximum Pause Delay, in milliseconds. An error is reported
when J Optimizer detects excessive garbage collection activity. The
default value is 100 miliseconds.

Allocation Count Specify a maximum StringBuffer Allocation Count. An error is reported
when the number of string buffer allocations per method invocations
exceeds the maximum allocation count specified. The default value is
10.

Exception Classes Indicate Exception Classes to exclude and/or include. Exceptions are
reported when the name of the class throwing the exception matches
the pattern specified.

Byte-based container
growth Specify the Minimum Size and Growth Count for byte-based container

growth. An error is reported when the minimum size or growth count is
exceeded. The default values are 1024 bytes and a count of 2.

Array-based container
growth Specify the Minimum Size and Growth Count for array-based

container growth. An error is reported when the minimum size or
growth count is exceeded. The default values are 100 and 2.

Hashtable-based
container growth

Specify the Minimum Size and Growth Count for hashtable-based
container growth. An error is reported when the minimum size or
growth count is exceeded. The default values are 101 and 2.

2.

On the J Optimizer Profiler dialog, click Finish.3.
On the main Profile Configuration Wizard page, click Apply save your changes, or Profile to start profiling immediately. You can see
the results in the J Optimizer Application Quality Analyzer data view. To access this view, select Window from the main menu, then
Show Views, followed by Other... The Application Quality Analyzer view is listed near the top of the J Optimizer views.

4.

2.4. Configuring VM Metrics
The VM Metrics analyzer is a J Optimizer feature that you can run with the Memory and CPU Profiler or the Request Analyzer. You can the
VM Metrics analyzer to gather the following performance information on the program you want to profile:

Number of loaded classes

Heap size allocated to Java objects

Number of active threads

Garbage collector activity

For more detailed descriptions of the information collected by the VM analyzer , click here.

Setting VM Metrics Options
Use the instructions below when you are in the process of creating or editing a Memory, CPU, or Request Analyzer profile configuration.
After you activate the Metrics settings and run the profile configuration, you can see the results in the J Optimizer Metrics data view.

To set VM Metrics options:

13 of 40 Copyright Embarcadero Technologies, Inc.

In the left pane of the Configuration Details window, select Metrics. The Metrics fields appear in the right pane, as shown below.1.
In the right pane, ensure that the Show Metrics field is selected.2.
In the Java heap settings section, indicate the following if you want to view heap metrics:

Field name Description

Show java heap metrics This field is selected by default

Update interval Specify seconds, minutes or hours

Buffer Type Specify time or size

Buffer Size Specify seconds, minutes or hours

3.

In the Thread count settings section, select the Show thread count metrics if you want to view thread metrics. Then set the thread
interval and buffer fields as desired.

4.

In the Class count settings section, select the Show class count metrics field to view class methods. Then set the class interval
and buffer fields accordingly.

5.

In the Show garbage collection settings section, select the Show garbage collection metrics field to view garbage collection
metrics. Then set the garbage collection interval and buffer fields as desired.

6.

When you are finished, click OK. This saves your settings returns you to the Profile Configuration Wizard from which you can Finish
the configuration or change more settings. When you run this profile configuration, you can see the results in the J Optimizer Metrics
data view.

7.

Related Topics
About Collecting VM Metrics

2.5. About Unit Test Profiling
You can use the J Optimizer CPU Profiler and the Memory Profiler to gather, display, and compare performance information for JUnit tests.
Performance data is gathered and automatically stored in a snapshot for each test. These snapshots include performance data provided by
the CPU and Memory Profiler. JUnit test profiling is supported by the J Optimizer Profiler within the user interface and from the command
line.

Viewing Unit Test Profiling Results
After each individual test finishes executing, the J Optimizer Profiler runs the garbage collector, marks the current instance count, and clears
any errors captured by the Application Quality Analyzer.

If you start a testing session for unit tests from the command line, you must be attached to the J Optimizer Agent while the tests are running
to access the Unit Test View. When you start a testing session within the user interface, the Unit Test view opens automatically, and reports
the progress of the different unit tests as they run. Once all tests have been executed, you can view snapshots for individual tests, as
explained in the procedure below.

The Unit Test view lists the tests that have run during a given testing session and reports the following information for each test:

Test status, passed or failed

Amount of time the test took to execute

Number of objects allocated

Number of objects garbage collected

Amount of Memory allocated by object creation

Amount of Memory freed

To display the JUnit Test View, select Window>Show View>Other. In the Show View dialog, under J Optimizer, select Unit Test
Snapshots to insert this view into the J Optimizer perspective.

How to Profile JUnit Tests and View Results
To run the profiler for a unit test and view results:

Open the Profile Configuration wizard. 1.
In the left pane, choose the JUnit Test you want to profile.2.
In the right pane, select the Profiler tool, then click Edit Options to view Profiler options. 3.
On the next dialog, click Details.4.
On Configuration Details, in the left pane, click Unit Test Snapshots.5.

14 of 40 Copyright Embarcadero Technologies, Inc.

In the right pane, ensure that Enable Snapshot-Generation for Unit Tests is enabled.6.
In the Snapshot generation options section, you can take the following actions:

Report Memory instructs J Optimizer to run the memory profiler in addition to the CPU profiler. Deselect if you don't want J
Optimizer to profile memory usage.

Filter JUnit classes instructs J Optimizer to collect and display only non-JUnit classes. Deselect to include JUnit class
information.

7.

Select a directory in which to store the snapshots.8.
Click OK to save your changes. 9.
On the Profiler diaglog, click Finish.10.
On the main Profile Configurations wizard page, click Apply to save your changes, and/or Profile to start profiling results.11.
To view the JUnit test snapshots when profiling completes, right-click on the test process in the Profiling Monitor and select
Optimizit, followed by the name of the snapshot (CPU activities or Memory activities). The snapshot appears in the right pane.

12.

3. Overview of CPU Profiling
In the J Optimizer UI, the tool called "Profiler" can perform both Memory and CPU profiling (though not simultaneously). This Help page
provides an overview of CPU profiling. For an overview of memory profiling, click here.

Use the CPU Profiler to identify which methods your program uses and help you understand what to change to improve performance. The
CPU Profiler displays profiling results for each thread or thread group for pure CPU use or for elapsed time (pure CPU and inactive phases).
You can start or stop profiling at any time, with millisecond or microsecond precision. The CPU Profiler has both sampler-based and
instrumentation-based modes, and also contains filters to remove fast methods.

The CPU Profiler displays the methods used by hot spots. Hot spots are methods where the most time is spent. The time shown is the time
the program spent in a method, no matter where the method was called from. You can determine if a single method acts as a bottleneck and
can be optimized to speed up all the tested features. A backtrace tree showing how time was spent or how the CPU was used during the
testing session can also be displayed, helping you understand what to change to improve performance.

You can select and launch the CPU profiler from within a CPU profile configuration and a Request Analyzer profile configuration.

Understanding CPU Profiler Output
The CPU Profiler displays a call stack trace for a thread or thread group that executed during the profiling session. By default, the CPU
Profiler displays data for the thread responsible for the most CPU activity. You can select a thread or thread group from the drop-down
thread menu at the top of the CPU Profiler view. Selecting a thread group shows how the time was spent for all threads and thread groups
belonging to the thread group.

The call stack trace can be displayed as a backtrace tree, a graph, or a table. The stack trace information can help you track down the
source code responsible for CPU utilization or bottlenecks.

Tip: Click Reverse Display to reverse the backtrace tree from the leaves to the root. This view can be useful when you need to focus on
methods or lines of code rather than broad features in your test program.

The CPU Profiler view also includes a table that lists hot spots. Hot spots are methods where the most time is spent. The time shown is the
time the program spent in a method, no matter where the method was called from. You can determine if a single method acts as a
bottleneck and can be optimized to speed up all the tested features.

About the Two CPU Profilers
J Optimizer provides two types of CPU Profilers:

Sampler

Instrumentation

One type of profiler may work better for your code than the other. The sampler profiler is very good at testing a large amount of code for a
long time. The instrumentation profiler is very good at precisely testing a small amount of code. The instrumentation profiler also shows if a
method is slow or if it is called too often.

The type of profiler you are using determines what options you have to refine your CPU Profiler display.

Note: The default J Optimizer filters aggressively filter code. By default, no non-public methods will be reported, as they are all filtered. You may
want to remove the filter conditions for these methods, depending on your needs.

Sampler Profiler

15 of 40 Copyright Embarcadero Technologies, Inc.

The sampler profiler interrupts all running threads periodically. The sampling period is specified by the user. Once all threads are interrupted,
the CPU Profiler records what each thread is currently doing and whether each thread is currently using CPU. It then resumes all running
threads.

The sampler profiler is recommended for the following testing situations:

Testing a program for a very long time, for example, testing a server overnight. This is because sampler has very low overhead and
excellent scalability.

Testing a feature that requires a lot of different code, for example, the startup of a large UI-intensive application. Because sampler
pauses all threads before recording any information, it does not distort performance data. Sampler can also detect performance
bottlenecks within methods because it is not based on method invocations.

Note the following disadvantages of the sampler profiler:

Lack of precision: the precision of the sampler profiler is not greater than its sampling period.

Does not record the number of method invocations.

Instrumentation Profiler
The instrumentation profiler, which is recommended for precision testing, intercepts method invocations. Each time a method is called, the
CPU Profiler records the fact that a method was called and gives the control back to the application. The profiler also intercepts when a
method returns from executing and records the amount of time or CPU that was spent in the method.

The instrumentation profiler is recommended for the following testing situations:

Testing anything that executes in less than a few hundred milliseconds, for example, a menu action. Instrumentation can measure
precision in microseconds, and each time a method is invoked, it is recorded.

Testing a system that has many threads executing many small requests, for example, a servlet. Instrumentation records the number of
times each method is invoked.

Note the following disadvantages of the instrumentation profiler:

Lack of scalability: this profiler records a lot of information.

Information distortion: this profiler actually runs in the tested program threads. All method invocations are slower. Even if the profiler
compensates, this can lead to distorted results.

Large overhead: the tested application runs several times slower.

About the Application Quality Analyzer
The Application Quality Analyzer (AQA) detects errors and warnings in the code being profiled. Types of errors reported include abnormal
container growth, inefficient StringBuffer use, abnormal garbage collection duration, exception locations, abnormal finalizer queue length, and
unclosed FileDescriptor objects. You can access AQA settings while creating or editing a CPU or Memory profile configuration.

Viewing Memory and CPU Metrics
The Virtual Machine (VM) Metrics analyzer returns class count, thread use, and heap size informance that helps you determine if a
performance problem is related to CPU, memory, or both. You can instruct J Optimizer to collect VM Metrics when you run the Memory or
CPU Profiler, or the Request Analyzer. For more information about collecting VM metrics, click here.

Related Topics
About Memory Profiling
About Analyzing Application Quality
About Collecting VM Metrics
About Viewing Profile Results

3.1. Creating a CPU Profile Configuration
In J Optimizer UI, the tool called "Profiler" can perform Memory and CPU profiling (though not simultaneously). This Help page explains
how to use Standalone J Optimizer to create a profile configuration that profiles CPU data. For instructions on creating a memory profile
configuration, see "Creating a Memory Profile Configuration."

The CPU profiler offers two types of CPU profiling: the Sampler profiler is very effective at testing a large amount of code for a long time.
The Instrumentation profiler is very effective at precisely testing a small amount of code. The instrumentation profiler also shows if a
method is slow or if it is called too often. You specify the type of CPU profiling you want to use when creating the CPU profile configuration.

To create a new memory profile configuration:

16 of 40 Copyright Embarcadero Technologies, Inc.

Open the Profile Configuration wizard.1.
In the left pane, choose the Java program you want to profile.2.
In the right pane, click the Profiling tab.3.
Use the down-arrow in the Profiling Tool to select the Profiler tool.4.
In the General options section, you can do the following:

Field name Description

Virtual Machine Name Change this name if desired. By default, J Optimizer creates a VM
name based on the selected profiling tool.

Pause after launch This option pauses the application before it executes the main method,
thereby providing time to study the program's launch phase.

Pause on exit When profiling a fast-running application, select this field to give the
profiling tool time to complete data collection after the application
stops running.

Enable audit API Select this option to use J Optimizer API code in your tested
application to control CPU Profiler and Memory Profiler operation.

5.

In the Configuration Overview section, ensure that Auto-start CPU is selected, then click Details. This generates the Configuration
Details window.

6.

On Configuration Details, click CPU in the left pane to display CPU settings in the right pane.7.
In the right pane, change the following CPU profiling settings as needed, then click OK. This saves your changes and closes the
Configuration Details window.

Field name Description

Auto-start CPU profiler Select to use the CPU profiler.

Instrumentation Select to enable Instrumentation-type CPU profiling; this is the default
setting for the CPU Profiler. For details on how instrumentation profiling
works, click here.

Instrumentation options --In the Precision field, specify microseconds if you do not want data
collected in milliseconds, the default.
--Select Enable instrumentation filter to filter fast methods from the
output.
--Select Enable Root Filtering to add a filter pattern to tailor data
collection.

Sampler Select to enable Sampler-type profiling. For details on how sampler
profiling works, click here.

Sampler options --The Precision attribute can be set to method or line to control the
precision of the CPU Profiler output. Set this attribute to method to
aggregate data by method.
--The Period attribute specifies the sampling period in milliseconds,
which controls the granularity of the output. Use a small value for a short
test session and larger value for a long test session. This value is
typically in the range of 1 to 100.

Record only CPU usage Select to record only CPU usage.

Recording options You can set the CPU profiler to collect data at timed intervals, or you
can start and stop it manually at any time during your profiling session.

8.

This returns you to the Profiling tab, on which you can make the following additional selections:

Field name Description

Auto-start CPU Select to start the CPU profiler recording when you start the Profiler.

Quality Analyzer By default, the Profiler collects Quality Analyzer data during profiling.
Deselect this field if you don't want to receive this information. For
more about Quality Analyzer information, click here.

9.

17 of 40 Copyright Embarcadero Technologies, Inc.

Show VM Metrics By default, the Profiler collects VM metrics during profiling. Deselect
this field if you don't want to receive these metrics. For more about
VM metrics, click here.

Memory Profiling If you select this field, the memory Profiler will start reporting data
after the CPU Profiler recording stops.

Use Filters J Optimizer automatically enables filter creation for use with the
Profiler. Deselect if you do not want to create filters. For more
information about creating and using filters, click here.

Auto-Capture Select this field to have J Optimizer generate snapshots during the
profiling process.

Import Click this button to import and edit a saved profiling configuration.

Export Click this button to save this profile configuration and reuse it later as
an imported profile configuration.

Only launch the profiling
agent

Select this field if you plan to view profiling results on a separate
client.

Click Apply to complete this profile configuration, or Profile to start profiling immediately.10.

What Happens Next
Use the J Optimizer viewing options to see and analyze the data collected by the profiling tool.

To edit a configuration, click on the Profile Configuration icon, then select the Profile Configurations option. This opens the wizard. In the left
pane, click on the configuration, then on the tabs that contain the fields you want to change.

Related Topics
Overview of Tool Configuration from the UI
About Profiling CPU Usage
About Viewing Profile Results
About the Profiling Quality Analyzer
Viewing VM Metrics

4. Overview of Code Coverage
J Optimizer Code Coverage allows you to determine the exact lines of source code that your application is executing. In real time, you can
see how frequently each class, method, branch, and line of code is executed. You can use J Optimizer Code Coverage to test applications,
applets, JavaBeans, Enterprise JavaBeans (EJBs), JavaServer Pages (JSPs), and virtually any other Java code. You specify Code
Coverage settings in a Code Coverage Profile Configuration.

J Optimizer Code Coverage is designed to help you identify and analyze the following information about your code:

Dead code: Every line of code in a program should be functional. Dead code, occurring when code is dormant or cannot be
accessed, may reveal logic errors. Dormant code makes an application longer and more difficult to understand. You can use Code
Coverage to locate dormant code. You can also use Code Coverage to identify how much of your code has been used by highlighting
all tested code. Understanding exactly which classes, methods, and lines of code have not been used allows you to modify your test
plan to cover all areas of the code.

Frequently used code: Identify the classes and methods in your code that are used most frequently. Performance optimization on
frequently used code can have a substantial impact on overall performance. To find frequently used code, open the Method Coverage
windows for the class you want to examine. The Invocation # column shows the number of times the selected method was invoked,
representing how frequently (or infrequently)it is used.

Unloaded classes: Unloaded classes are classes that exist in your class path but are not called. You can use the J Optimizer Code
Coverage report to identify the number of classes never loaded by the virtual machine. The report lists unloaded classes by name.
This report is available in HTML, CSV, or XML formats.

Code Coverage Data Views
J Optimizer can display the data collected by Code Coverage in two ways:

18 of 40 Copyright Embarcadero Technologies, Inc.

Class coverage view: Use the Class Coverage view to identify a class you want to investigate. Once you have identified a class to
investigate, you can use the Method Coverage view for more detailed code usage information.

Method coverage view: To view code usage detail, select a class and double-click it. Method Coverage will display the source code
for your method as well as statistical information about the number of times your method was called while the target application was
running.

The Coverage column in the Class Coverage and Method Coverage windows display the percentage of a class or method that can be
executed.

You can also save test information as a snapshot, which can be viewed later for further analysis. This is useful, for example, when you are
testing several different classes in one test pass. Snapshots are generated from within the user interface or with a specific command option
when running the test program.

Related Topics
Generating a Code Coverage Report
About Viewing Profile Results

4.1. Creating a Code Coverage Profile Configuration
The instructions on this Help page explain how to configure and launch the Code Coverage tool using Stand-alone J Optimizer.

To create a new code coverage profile configuration:

Open the Profile Configuration wizard. 1.
In the left pane, choose the Java program you want to profile.2.
In the right pane, click the Profiling tab.3.
Use the down-arrow in the Profiling Tool field to select the Code Coverage tool.4.
In the General options section, you can do the following:

Field name Description

Virtual Machine Name Change this name if desired. By default, J Optimizer creates a VM
name based on the selected profiling tool.

Pause after launch This option pauses the application before it executes the main method,
thereby providing time to study the program's launch phase.

Pause on exit When profiling a fast-running application, select this field to give the
profiling tool time to complete data collection after the application
stops running.

Generate snapshot when
exiting

Select to generate a snapshot file of code coverage profiling data
before the profiler finishes.

5.

In the Configuration overview section, deselect Use filters if you don't want to use filters for this profiling session. Click the Details
button if you do want to set up data collection filters.

6.

Click Import to import and edit a profile configuration from a saved profiling session. 7.
Click Export to save this profile configuration and reuse it later as an imported configuration.8.
Select the checkbox in the Only launch the profile agent field if you plan to view profiling results on a separate client.9.
Click Apply to complete this profile configuration, or Profile to start profiling immediately.10.

What Happens Next
Use the J Optimizer viewing options to see and analyze the data collected by the profiling tool.

To edit a configuration, click on the Profile Configuration icon, then select the Profile Configurations option. This opens the wizard. In the left
pane, click on the configuration, then on the tabs that contain the fields you want to change.

Related Topics
About the Code Coverage Tool
Overview of Tool Configuration from the UI
About Viewing Profile Results
How to Generate a Code Coverage Report

19 of 40 Copyright Embarcadero Technologies, Inc.

4.3. Generating a Code Coverage Report
At the command line, you can generate a report from a testing snapshot using the ReportGenerator class. A coverage report presents the
test information for all covered classes. You can customize your report with ReportGenerator options.

Report Generator Syntax
After you have modified you environment variables, invoke the J Optimizer Code Coverage ReportGenerator class:

java intuitive.optit.coverage.ReportGenerator
 [-methodInfo] [-showDiff] [-showSignatures] [-reportType FileType]
 [-verbose] [-showSource] [-sourcePath SourcePath] snapshot report

Should you need help setting the appropriate environment variables, refer to the following code snippet as a working example:

SET OPTI_HOME=C:\JOptimizer
SET JAVA_HOME=C:\jdk1.5.0
SET CLASSPATH=%OPTI_HOME%\joptimizer-agent\lib\optit.jar;%CLASSPATH%
SET PATH=%OPTI_HOME%\joptimizer-agent\bin;%PATH%
%JAVA_HOME%\bin\java -Djava.library.path=%OPTI_HOME%\joptimizer-agent\bin intuitive.optit.coverage.Repor

The following table describes the ReportGenerator command options:

Option Description

-methodInfo Specifies to include the method test information.

For each tested class, the report includes a table with the test results for each method of the class.

-showDiff Specifies to include the test information since the mark.

-showSignatures Displays the full name of methods, including their signatures.

-reportType Specifies the type of report generated.

Follow this option with either HTML or ASCII. The default value is HTML.

-verbose Prints information about the status of the report generation.

-showSource Specifies to include the available source code and line coverage for the tested classes.

This option is only effective with the -methodInfo option.

-sourcePath Specifies the location for the source code when the -showSource option is used.

Follow this option with the path to the source files of the classes tested.

Command Examples
The following Windows command generates the report stressTest.html from the snapshot stressTest.snp, including the method coverage
information.

java intuitive.optit.coverage.ReportGenerator
 -methodInfo c:\Test\stressTest.snp c:\Test\stressTest.html

On Linux, the same command would look like the following:

java intuitive.optit.coverage.ReportGenerator
 -methodInfo /home/user/Test/stressTest.snp /home/user/Test/stressTest.html

The following command generates the report EJBs_coverage.html from the snapshot test5.snp, including the method information. The
methods display with their full signature. The source code with line coverage information is included. The source file for the tested classes is
located under the directory c:\EJB_src.

java intuitive.optit.coverage.ReportGenerator
 -methodInfo -showSignatures -showSource
 -sourcePath c:\EJB_src test5.snp EJBs_coverage.html

On Linux, the same command would look like the following:

20 of 40 Copyright Embarcadero Technologies, Inc.

java intuitive.optit.coverage.ReportGenerator
 -methodInfo -showSignatures -showSource
 -sourcePath /home/user/EJB_src test5.snp /home/user/EJBs_coverage.html

5. Overview of Thread Debugger
The J Optimizer Thread Debugger displays real-time threading information for Java applications, applets, and JavaBean components. You
can see how your program uses computer resources, as well as identify thread contentions, thread starvation, excessive locking, and
deadlocks. The J Optimizer Thread Debugger provides automatic thread and monitor usage reports that help developers prevent deadlocks
and other thread issues before they occur. You specify Thread Debugger options in a Thread Debugger Profile Configuration.

About the Thread Debugger Data Views
The J Optimizer Thread Debugger provides three main views for displaying data collected by the Agent:

Thread Display: Use this display to view thread activity.

Monitor Display: Use this view to analyze thread deadlocks.

Monitor Usage Analyzer: This view can help predict deadlocks before they occur.

By default, the J Optimizer Thread Debugger starts in the Thread Display view. If you select a thread in the Thread Display view, you can
access additional views of detailed activity information for individual threads.

Using the Realtime Thread Display
The Real Time Thread Display provides a real-time display of all threads used by the test program as well as their progress in a monitor
usage graph. For each thread, you can see how many monitors are owned and how many monitors were entered. For threads waiting on
monitors, you can determine how long each thread has been blocked and where threads are waiting.

The Real Time Thread Display also:

Displays where blocked threads are waiting for monitors (includes monitors and threads involved in the contention).

Displays how long each thread waiting for Input/Output operations has been waiting and where it is waiting.

Automatically highlights lines of code relevant to thread activity.

Allows specific time-range queries for details such as code execution location.

Displays locking situations in real time in an easy-to-understand graph.

Allows graph links to be selected. These links show where a thread entered a monitor or where a thread is blocking for a monitor.

From an individual thread in the Threads Display view, you can navigate to the following views for tracing specific activity information for a
given thread back to the source code:

Contention view

Waiting and I/O-Waiting views

Monitor Enter view

These views are accessed from J Optimizer Thread Debugger toolbar.

Contention View
The Contention view provides all the data necessary to understand why a contention occurs for a monitor. To display the Contention view,
select a thread in the Thread Display view that has been blocking for some monitors and then click the Contention View button.

Waiting and I/O-Waiting Views
The Waiting and I/O-Waiting Views describe why a thread is not making progress. Both views apply to the thread selected in the Thread
Display view.

The Waiting view displays where a thread is waiting for a monitor.

The I/O-Waiting view displays where a thread is blocked on an Input/Output (I/O) operation. J Optimizer Thread Debugger assumes
an I/O operation is taking place if the thread is not making any progress in native code for a few milliseconds or more.

Monitor Enter View
The Monitor Enter View describes where a thread enters and locks monitors. Use this information to understand and correct excessive
locking. The Monitor Enter View is used to study the optimum number of monitors to perform an operation. Although virtual machines are

21 of 40 Copyright Embarcadero Technologies, Inc.

becoming faster at unlocking unused monitors, entering unnecessary monitors may degrade performance by creating unnecessary
contentions.

Using the Realtime Monitor Display
The Real Time Monitor Display provides a real-time display of thread and monitor relationships, and allows each relationship to be individually
selected and viewed. It also provides stack traces of blocked methods and those acquiring monitors.

Using the Monitor Usage Analyzer
The Monitor Usage Analyzer records monitor usage patterns while the Thread Debugger is running. It automatically reports warnings and
errors about runtime situations that can lead to deadlocks. Additionally, it reports errors when:

Different threads use multiple monitors in a different sequence.

Threads enter a monitor and wait for another monitor.

Threads enter a monitor and wait on an I/O operation

Related Topics
About Identifying Thread Problems
About Viewing Profile Results

5.1. Creating a Thread Debugger Profile Configuration
The instructions on this Help page explains how to configure and launch the Thread Debugger tool using Stand-alone J Optimizer.

To create a new thread debugger profile configuration:

Open the Profile Configuration wizard. 1.
In the left pane, choose the Java program you want to profile.2.
In the right pane, click the Profiling tab. 3.
Use the down-arrow in the Profling Tool field to select the Thread Debugger tool. 4.
In the General options section, you can take the following actions:

Field name Description

Virtual Machine Name Change this name if desired. By default, J Optimizer creates a VM
name based on the selected profiling tool.

Pause after launch This option pauses the application before it executes the main method,
thereby providing time to study the program's launch phase.

Pause on exit When profiling a fast-running application, select this field to give the
profiling tool time to complete data collection after the application
stops running.

5.

In the Configuration overview section, select Auto-start Monitor Analyzer to record monitor usage while the thread debugger is
running.

6.

If you selected the Auto-start box in step 6, click the Details button to specify how you want the Analyzer to record time.
The Configuration Details dialog for the Monitor Analyzer appears. In the Monitor Analyzer section, change the following settings as
needed, then click OK.

Field name Description

Manual recording This default setting allows you to start and stop the Monitor Analyzer
recorder as needed.

Timed recording Select to specify how often, in seconds or miliseconds, you want the
Monitor Analyzer to record monitor usage.

7.

Back on the Profiling tab, select the checkbox in the Only launch the profile agent field if you plan to view profiling results on a
separate client.

8.

Click Import to import and edit a profile configuration from a saved profiling session.9.
Click Export to save this profile configuration and reuse it later as an imported configuration.10.

22 of 40 Copyright Embarcadero Technologies, Inc.

Back on the Monitor tab, click Apply to complete this profile configuration, and Profile to start profiling immediately.11.

What Happens Next
Use the J Optimizer viewing options to see and analyze the data collected by the profiling tool.

To edit a configuration, click on the Profile Configuration icon, then select the Profile Configurations option. This opens the wizard. In the left
pane, click on the configuration, then on the tabs that contain the fields you want to change.

Related Topics
About the Thread Debugger Tool
About Identifying Thread Problems
Overview of Tool Configuration from the UI
About Viewing Profile Results

5.2. Identifying Thread Problems
Use J Optimizer Thread Debugger to identify the following threading problems:

Thread contention

Thread starvation

Excessive thread locking

Deadlocks

This information can be used to improve the performance and reliability of your Java applications. You specify thread debugger options in a
Thread Debugger Profile Configuration.

Thread Contention
A contention is a situation where two or more threads are trying to enter the same monitor. Multi-threaded Java applications can experience
severe performance bottlenecks if many threads attempt to acquire the same monitors at the same time. The J Optimizer Thread Debugger
Contention view provides all the data necessary to understand why a thread contention occurs for a monitor.

Many contentions are caused by either the locking granularity or thread traffic.

Locking Granularity Too High
Keeping critical sections as small as possible allows for maximum thread concurrency. When a critical section is too long, the locking
granularity is often too high. The critical section is the section of code executed while the monitor is held. The critical section can be either too
slow, or simply too large.

When the critical section takes too long, Thread Debugger shows that a few threads experience long contentions. Also, threads usually enter
monitors very high in the call graph.

Often the best resolution is to use a monitor lower in the call stack. Consider removing any monitor that has a large scope and use one or
more monitors to protect data structures only while performing thread-unsafe computations.

Too Many Threads Using the Same Monitors
The issue may not be locking granularity. There may be too many threads competing for the same monitors, causing major contentions. In
such situations, the Thread Debugger shows all the threads blocking for the same monitors.

Avoid this situation by duplicating the resource each thread is trying to acquire and implementing a deterministic way for threads to always go
to the same resource.

For example, assume a program is experiencing some serious contentions while acquiring a monitor that is protecting a cache. All threads in
this program need the cache, so if cache operations are too small, contentions will exist. It is possible to resolve this situation by creating N
caches and making sure that the code accessing the cache always goes to cache i, where i is deterministically derived from the thread hash
code (for example, thread.hashCode() % N).

Thread Starvation
Thread starvation occurs when one or more threads tie up CPU resources, preventing other threads from executing. This can be caused by
poor scheduling or setting thread priorities inappropriately. The Thread Display in J Optimizer Thread Debugger provides a real-time view of
threads currently running within the virtual machine, making it easy to witness thread behavior and to understand if threads are running

23 of 40 Copyright Embarcadero Technologies, Inc.

normally. This display can help you understand and resolve thread starvation for a given resource.

Excessive Thread Locking
Excessive thread locking occurs when a program enters many monitors without having a real need for the provided synchronization. This can
occur, for example, when too many methods are synchronized, or when several monitors are used to protect the same critical section. The
Monitor Enter view in J Optimizer Thread Debugger describes where a thread enters and holds monitors. You can use this information to
understand and correct excessive locking.

Deadlocks
One of the most challenging aspects of multi-threaded programs is assuring that threads never deadlock. A deadlock occurs when two or
more threads cannot make progress because they require the same unavailable monitor. The monitor is unavailable because the thread
owning the monitor lock is itself blocking on another unavailable monitor, waiting for a monitor or an I/O operation.

The Monitor Display view helps you understand the cause of deadlocks that occur during a testing session by providing a real-time graph
showing the relationship of threads and monitors. If the deadlocking behavior is intermittent, use the Monitor Usage Analyzer view, which
predicts deadlocks before they occur.

6. Overview of Request Analyzer
All J Optimizer tools can profile JEE applications, but only the J Optimizer Request Analyzer can capture JEE-related events. The Request
Analyzer is designed specifically for JEE developers to identify and correct application programing problems during the development phase of
an application. When you integrate the Request Analyzer with your application server, the Request Analyzer captures and records component
and container activity while the application is in use. You specify Request Analyzer options and settings in a Request Analyzer profile
configuration.

You can use the J Optimizer Request Analyzer to:

Gather key performance metrics for JDBC, JSP, JMS, and other JEE elements.

Error tracking, including source code locations for errors and suggested solutions.

Continuous JEE profiling, concurrent with VM profiling, to track performance issues as they occur.

CPU profiling and dynamic high-level VM information.

The Request Analyzer also captures remote method invocations, and can report when your application is accessing Java objects running in
another VM using Java Remote Method Invocation (RMI). Likewise, if the attached VM receives RMI calls, the Request Analyzer reports the
calling method and the method called.

Request Analyzer results can be displayed in a variety of ways to help you isolate and analyze application code that may cause performance,
scalability, or reliability problems. Details are provided in the following section.

Using the Request Analyzer Views
J Optimizer Request Analyzer provides two main views containing comprehensive JEE application performance data:

The System Dashboard view provides a "big picture" view of JEE application performance.

Two JEE Component Performance views (summary and detail)

The JEE Component Performance view provide two levels performance data: the top-level summarizes the amount of time used by each
individal component, and, when you double-click on a component, a detailed view that includes graphic representation by pie-chart and
standard-deviation graph. Descriptions of the System Dashboard view and the top-level JEE Component Performance view are provided
below. For more information about the second-level, detailed view of individual JEE component performance, click here.

System Dashboard View
The System Dashboard provides a high level view of JEE application performance. This is the default view for J Optimizer Request Analyzer.
It is a good starting point for determining where to focus your attention in analyzing performance data. A sample System Dashboard view is
shown below.

24 of 40 Copyright Embarcadero Technologies, Inc.

The upper pane, JEE Component Distribution, contains a graphical representation of the amount of time associated with each of the
standard JEE components (JDBC, JNDI, Servlet and JSP, EJB, JMS, RMI, CCI, and Web Services) during the profiling session. The total
application activity time for the test period is listed in the lower right corner, along with the total number of requests handled by the server.

The bottom pane contains a table of system entrypoints. A system entrypoint is an external call into the attached application server. The
table lists each entrypoint with the amount of time (as a percentage of the total application activity time) spent in each JEE component by
each entry point.

Double-click an entry in the Entrypoint table to open the System Composite view. The entrypoint will be highlighted in the top pane.

JEE Component Performance Views
The JEE Component Performance views provide two levels of individual JEE performance data. The top-level displays an overview of the
application time spent in each individual JEE component. When you double-click on an individual JEE component, J Optimizer opens a
second-level JEE Component Performance view which displays more detailed information about that component, including graphic
representation by pie-chart and standard-deviation graph. For more information about the second-level JEE Component Performance
view, click here.

About the Top-level JEE Component Performance View
The upper pane of the top-level JEE Component Performance View is a stack trace that shows the relationship of events in terms of which
events called others. The entries are ordered by amount of time used, rather than chronologically. Each event is posted with an icon and
corresponding description, called a stack marker, that represents the type of action. You can look at the stack marker information in the
upper section of the System Component window in several different display formats. Right-click in the upper pane to choose a display.

If you double-click any entry in the JEE Component view, J Optimizer Request Analyzer opens the appropriate component performance view
for the entry. For example, double-click a tag and you will see the tag, and other JSP tags, in the Servlet and JSP Details view. To return to
the System Component view, click Show System Component on the J Optimizer Request Analyzer toolbar.

The bottom pane of the JEE Component Performance View contains the following pages:

Request Breakdown

Hotspots

Sub-Graph

Request Breakdown
The Request Breakdown page contains a bar graph that shows the percentage of time spent in the individual JEE components to process
the selected request.Clicking a component name or the associated bar in the bar graph will open the detail view for that component. For
example, clicking the bar for JDBC activity takes you to the JDBC Details view.

Hotspots

25 of 40 Copyright Embarcadero Technologies, Inc.

While the stack trace in the upper pane helps you understand the sequence of events, the Hotspots table in the lower pane has entries
organized by how much time was taken to execute the event. The Hotspots table explains what is using time, and which are the expensive
API calls. This is very useful information if you are in charge of the server, but what if you are using a URI, and four other people are using
four other URIs? By default, when showing the forward tree or graph, the Hotspots table displays only those hotspots that are children of the
event selected in the upper pane. This allows you to focus on your URI, with numbers based on your entries rather than on the server as a
whole.

Sub-Graph
The Sub-graph page shows a graph that starts at the selected event and displays all of the calls related to that event.

Related Topics
About the JEE Quality Analyzer
Viewing Detailed JEE Performance Data

6.1. Creating a Request Analyzer Profile Configuration
The instructions on this Help page explain how to configure and launch the Request Analyzer tool using Stand-alone J Optimizer.

To create a new request analyzer profile configuration:

Open the Profile Configuration wizard.1.
In the left pane, choose the Java program you want to profile.2.
In the right pane, click the Profiling tab.3.
Use the down-arrow in the Profiling Tool field to select the Request Analyzer tool.4.
In the General options section, you can take the following actions:

Field name Description

Virtual Machine Name Change this name if desired. By default, J Optimizer creates a VM
name based on the selected profiling tool.

Pause after launch This option pauses the application before it executes the main method,
thereby providing time to study the program's launch phase.

Pause on exit When profiling a fast-running application, select this field to give the
profiling tool time to complete data collection after the application
stops running.

5.

In the Configuration overview section, select JEE Component details, and any other options you want to start or enable.6.
Click Details to specify related settings. This generates the Configuration Details dialog.7.
On the Configuration Details dialog, in the left pane, click Components to expland the list of individual JEE components. This action
also displays the Components settings in the right pane. Important: The settings in the right pane apply to all of the JEE components.
To change the settings for an individual JEE component, click on the individual component's name in the left pane.

8.

In the right pane, change the following settings if desired, then click OK to save your changes.

Field name Description

Enable J2EE Drilldown Keep selected to enable JEE data collection.

Application Quality
Analyzer Options

The options in the Application Quality Analyzer section deliver reports
on various error conditions. Deselect a report if you do not want to
receive that information. For more information about the JEE Quality
Analyzer reports, click here.

Error Options Use these fields to specify a log file on Quality Analyzer results.

Miscellaneous
Options/Ignore Training

This option applies only to Unix users. Select this field to ignore
caching classes that you want to instrument.

9.

This returns you to the Profiling tab, on which you can make the following additional selections:

Field name Description

10.

26 of 40 Copyright Embarcadero Technologies, Inc.

Auto-start CPU Select to have the CPU profiler start when the Request Analyzer
starts. For more information about the CPU profiler, click here.

Show VM Metrics By default, the Request Analyzer collects VM metrics during profiling.
Deselect this field if you don't want to receive these metrics. For more
about VM metrics, click here.

Use Filters J Optimizer automatically enables filter creation for use with the
Request Analyzer. Deselect if you do not want to create filters. For
more information about creating and using filters, click here.

Auto-Capture Select this field to have J Optimizer generate snapshots during the
Request Analyzer profiling process.

Import Click this button to import and edit a saved profiling configuration.

Export Click this button to save this profile configuration and reuse it later as
an imported profile configuration.

Only launch the profiling
agent

Select this field if you plan to view profiling results on a separate
client.

Click Apply to save this profile configuration, or Profile to start profiling immediately.11.

What Happens Next
Use the J Optimizer viewing options to see and analyze the data collected by the profiling tool.

To edit a configuration, click on the Profile Configuration icon, then select the Profile Configurations option. This opens the wizard. In the left
pane, click on the configuration, then on the tabs that contain the fields you want to change.

Related Topics
Overview of Tool Configuration from the UI
About the Request Analyzer Tool
About the JEE Quality Analyzer
Viewing JEE Performance Data

6.2. Using the JEE Quality Analyzer
You can specify use of the Application Quality Analyzer, a real-time validation routine used by J Optimizer to check your code for basic
error conditions, when you create or edit a Request Analyzer profile configuration. The Application Quality Analyzer detects misuses of JEE,
such as adding non-serializable objects to a session, forgetting to close a JDBC or JMS object, or adding large objects to a session, as well
as exceptions thrown from the various JEE APIs.

Use the Application Quality Analyzer to identify the following types of problems:

Exceptions: Exceptions generally indicate that an error has occurred. Any JEE exceptions thrown from JEE APIs during testing are
reported in the Application Quality Analyzer view.

Errors: Errors identify real problems in the application code, such as a failure to close a result set, or failure to serialize data that is
supposed to be serializable.

Warnings: A warning identifies code that may or may not lead to a problem. For example, the failure to close a result set before
closing the statement from which the result set was generated will trigger a warning. Warnings can often provide useful information for
diagnosing the cause of an error.

More information about the data collected by the JEE Application Quality Analyzer is provided in the following sections. You can select and
edit these settings from within a Request Analyzer profile configuration.

Note: A different version of the Application Quality Analyzer can be launched from the CPU and Memory profile configurations.

Monitoring Session Size
The Application Quality Analyzer view is useful for QA teams, because it identifies coding errors in the application, as well as marking
potential problem areas. J Optimizer Request Analyzer verifies that HttpSession entries are serializable. Failure to claim serializability in an

27 of 40 Copyright Embarcadero Technologies, Inc.

entry in the HttpSession will produce problems on a few application servers, and is reported as a warning. Failure to serialize an object which
claims to be serializable is an error, and must be corrected. Objects which fail serialization will not failover properly in a production system,
and may lead to impossible-to-reproduce production problems.

Hurried or careless development can result in applications for which the size of a serialized HttpSession may expand excessively. From
pointing at an XML tree, to referencing the ServletContext within an Object in the session, it is easy to mistakenly overload an HttpSession
with unnecessary information. J Optimizer Request Analyzer allows you to set a maximum threshold for session size, beyond which an error
is generated. Again, as with failed serialization, a large HttpSession can lead to production instability and difficult-to-reproduce problems.

Monitoring Open Resources
JDBC and JMS activity is monitored by the Application Quality Analyzer view, as well. If your application closes a parent resource before its
children are closed, a warning is reported. If the VM garbage collects a JDBC or JMS object before that object is closed, an error is
reported. Some application servers automatically close JMS objects for you, and in that case, errors and warnings may not be posted. In
other cases, objects which are never closed are not even available for garbage collection, and in this case, you should pay attention to the
number of open resources in the # Open column of the JDBC Details view and JMS Details view. In most cases, however, the implicit close
of garbage collection, which works fine on development machines, but which can fail on production systems under load, is detected. Again,
errors should be considered as an indication that the application in production is likely to run into problems related to system (JDBC or JMS)
resources.

How to View JEE Quality Analyzer Results
Quality Analyzer results are displayed in the JEE Application Quality Analyzer view. The Application Quality Analyzer view uses standard
graphics to help you quickly identify the different types of reported problems. The icons in the Error column for error conditions typically
include a red circle containing an exclamation point. Warning icons typically have the letter "i" in a yellow triangle. Exception icons include a
red arrow. If you sort the table by the Error column, all warnings sort to the bottom of the table.

To display the JEE Application Quality Analyzer view, take the following steps:

Select Windows from the main menu.1.
Scroll down to Show Views, then select JEE Application Quality Analyzer from the context menu.2.

6.5. Viewing Individual JEE Component Performance
Details

The J Optimizer Request Analyzer tool collects key performance metrics for all of the standard JEE components including JSP, JDBC, and
JMS. The Request Analyzer provides two views that display the its results:

A System Dashboard view

Two JEE Component Performance Views (summary and detail)

The JEE Component Performance view can display data on two levels: the top-level view summarizes the amount of time used by each
event, while the second-level displays event details in graphic form. This Help topic explains how to view and understand data for the
second-level JEE Component Performance view. For a summary of the System Dashboard view, and of the top-level JEE Component
Performance view, click here.

Accessing the JEE Component Details View
The second-level JEE Component Performance view displays a graphic representation of performance activity for each individual component.

To access the second, more detailed, level:

In the upper pane of the System Dashboard view, double-click on the component for which you want to view details. For example,
Servet and JSP. This opens a JEE Component Performance view tab for the component you selected.

1.

In the upper pane of the JEE Component Performance view tab, double-click a line of detail. For example, as shown in the image
below, /petstore/.

2.

This displays component detail in two graphs in the lower pane (called "Description"). The standard deviation graph appears at left,
and the pie chart at right, as shown in the image below.

3.

28 of 40 Copyright Embarcadero Technologies, Inc.

About the Standard Deviation Graph
When a standard deviation is available, a graphic representation of it is displayed as an idealized bell curve. The graphic includes lines that
represent the minimum and maximum values, one standard deviation from the mean, and the average (mean) value. Move the pointer over
lines to see the associated values. These values are also displayed in a legend to the left of the graph.

Curves that are shifted toward the Y-axis, with a maximum line in the outlying area to the right, indicate that the majority of events were
concentrated in the same area, but some events exceeded the norm. If the bell curve is too concentrated or small, you can change whether
the Y-axis is forced onto the plot. Right-click on the graph, and choose Always Show Y Axis to make it easier to see the individual lines.

About the Call Breakdown Pie Chart
In addition, a breakdown of the calls by VM is displayed. By default, call data is broken down by time spent. However, you can right-click the
pie chart and get a breakdown by entry count, call count, or by average time spent. If the row selected is combining types, another pie chart
which separates each of the combined types is displayed. A pie chart is not available if some calls are nested, because the sum of individual
nested times is greater than the whole time spent for the entry. In this case, only the legend is displayed. You can click pie pieces or legend
entries to see the data for individual VMs or types. The selection, however, makes no changes in the Calls or Resources pages. Calls or
Resources pages always display all data pertaining to the row selected in the upper pane.

7. Overview of Profiling from a Command Line
To profile an application or application server on a remote or offline machine, or on a machine that does not have a GUI (such as Solaris),
you can configure and start J Optimizer from a command line.

To profile a Java program from a command line, take the following steps. Each step contains a link to more detailed instructions on how to
perform that step.

Configure the machine, application, and/or server to work with J Optimizer. To do you, you configure the following:1.

Set environment variables.

Edit options as desired for each profiling tool in the optimizeit.xml configuration file. In addition, if you are using a socket
connection, you must specify a port range in the configuration file. If you are using a TPTP connection.

To use a TPTP connection:

29 of 40 Copyright Embarcadero Technologies, Inc.

Run SetConfig.bat (Windows) or SetConfig.sh (Linux) to configure the J Optimizer agent-controller. When you see
'Network access mode', type ALL. This allows any host to connect to the agent.

1.

Run the agent controller executable. For example, in XP run: <joptimizer-agent directory>/bin/acserver.exe. On Linux,
run: ACStart.sh.

2.

You are now ready to select a startup argument and profiling tool, start profiling, and use your TPTP connection to view
profiling results.

Select the startup argument and profiling tool you want to use. 2.
Attach to the J Optimizer user interface to view profiling results.3.

Note: If you are profiling an application that is deployed and run on an application server, you must first integrate the J Optimizer Agent with the
application server. Once the J Optimizer Agent is integrated, starting the server simultaneously starts the Agent, so be sure to select the
profiling tool you want to use before starting the application server.

About Remote Profiling
For remote profiling, you start both J Optimizer and the application you want to profile from the command line. You then attach to the remote
program from the J Optimizer UI. This is typically used for web or enterprise applications running on a web or application server. Note that
the J Optimizer Agent runs in the same VM as the application you wish to profile. It is not run separately from the application.

About Offline Profiling
J Optimizer Profiler supports offline profiling for automatically collecting and storing application performance information from a profiling
session. During the profiling session, J Optimizer automatically generates snapshots at fixed intervals. Offline profiling is enabled with the

<auto-capture> element in the J Optimizer configuration file. Start an offline profiling session from the command line using a script or
command that references the J Optimizer configuration file.

Offline profiling minimizes J Optimizer Profiler overhead in the VM because you do not attach to the application. This allows you to test an
application over a long period or in a production environment. The snapshots generated during an offline profiling testing session can be
compared and graphed to identify potential performance problems. View individual snapshots in J Optimizer Profiler to isolate performance
problems and trace them back to their source.

For offline profiling, you start both J Optimizer Agent and the application you want to profile from the command line, with the auto-capture
option enabled. This is typically used for automated testing.

Note: Offline profiling is available for J Optimizer Profiler only.

Related Topics
Setting Environment Variables
About Editing the J Optimizer Configuration File
Selecting and Issuing a Startup Argument
Setting Up the Tool Selector
Attaching to the UI to View Profiling Results

7.1. Setting Environment Variables
Before you start a remote or offline profiling session, you must first update your environment variables to make the J Optimizer libraries
available. This Help topic explains how to do so. Once you have set the environment variables, you can edit the configuration file as needed
and start profiling.

To set environment variables for Windows:

Add the J Optimizer library file optit.jar to the CLASSPATH.
The optit.jar file is located in the lib directory of the J Optimizer-agent sub-directory of your JBuilder installation. You can
add optit.jar to the CLASSPATH from the command line, as part of a script, or with a Java command argument when you start
the Agent.
In a script or from the command line, use the following line:

set CLASSPATH=<JBuilder2008>\joptimizer-agent\lib\optit.jar;%CLASSPATH%

As part of the command for starting the Agent with your application server or remote application, use the following Java command
option:

-classpath <JBuilder2008>\joptimizer-agent\lib\optit.jar;%CLASSPATH%

1.

Add the J Optimizer-agent\lib directory in your JBuilder installation to the system path.
In a script or from the command line, use the following line to add the lib directory to the system path:

2.

30 of 40 Copyright Embarcadero Technologies, Inc.

set PATH=<JBuilder2008>joptimizer-agent\lib;%PATH%

To set environment variables in Linux, Mac, and Solaris:

Add the J Optimizer library file optit.jar to the CLASSPATH.
The optit.jar file is located in the lib directory of the J Optimizer-agent sub-directory of your JBuilder installation. You can
add optit.jar to the CLASSPATH from the command line, as part of a script, or with a Java command argument when you start
the Agent.
In a script or from the command line, use the following lines:

CLASSPATH=<JBuilder2008>/joptimizer-agent/lib/optit.jar:$CLASSPATH
export CLASSPATH

As part of the command for starting the Agent with your application server or remote application, use the following Java command
option:

-classpath <JBuilder2008>joptimizer-agent/lib/optit.jar:$CLASSPATH

1.

Add the lib directory in your J Optimizer installation to the library path.
Set this path variable:

LD_LIBRARY_PATH=<JBuilder2008>/joptimizer-agent/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

2.

Tip: If you are using an administrative console and your application server (such as WebSphere) does not provide ways to modify the library
path, try copying the J Optimizer shared library, liboii.so, located in the lib directory of the J Optimizer-agent sub-directory of your
JBuilder installation to the bin or lib directory of your application server. Alternatively, you may want to use symbolic links to the file in the
bin directory of your J Optimizer installation instead of copying the file.

Related Topics
Overview of Profiling from a Command Line
About Editing the J Optimizer Configuration File
Selecting and Issuing a Startup Argument
Attaching to the Opti UI to View Profiling Results

7.2. Editing Configuration File Options
You use the J Optimizer configuration file, optimizeit.xml, to modify the profiling options available for each tool, and, when
applicable, to specify a port range. The J Optimizer configuration file is used in the command to start J Optimizer and to integrate J
Optimizer with application servers.

To modify configuration file options, you can create your own configuration file, or use an application server wizard to write the modified
configuration file to one of your application server directories.

The J Optimizer configuration file is organized into the following sections:

Global Options (described below)

Memory and CPU Profiler
Code Coverage
Thread Debugger
Request Analyzer

Note: Although you can set configuration options for multiple profiling tools at the same time, you can only profile with one tool at a time.

Global Options
The following element does not apply to specific J Optimizer profiling tools. This option is specified at the beginning of the file:

Element Description

<optimizeit-configuration> This is the root element for the configuration file.
This element specifies the schema information for the J Optimizer configuration file.

The default J Optimizer configuration file contains the following global option settings:

<optimizeit-configuration xsi:noNamespaceSchemaLocation="./oiconfig.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 .

31 of 40 Copyright Embarcadero Technologies, Inc.

 .
 .
</optimizeit-configuration>

7.3. Selecting and Issuing a Startup Argument
After setting environment variables and editing the J Optimizer configuration file, you can use one of the startup arguments in the table
below to launch both your target application and the profiling tool you want to use. When profiling completes, you can attach to the GUI to
view profiling data.

The startup argument you choose must specify one of the J Optimizer Agent shared library files, which are explained in the following section.
Be sure to read this section before deciding which library to use in the command. Your startup command should also specify a path to your
bootclass files. Sample arguments are provided later in this Help topic.

IMPORTANT: All of the command line arguments provided on this page can be used on Windows, Mac, Linux, and Solaris machines.

Arguments Description

-Xrun<J Optimizer_Agent>:
<path_to_J Optimizer_xml>

For JDK 1.5 and older VMs. This argument specifies the name of the J Optimizer Agent
shared library and the path to the J Optimizer configuration file. The J Optimizer Agent shared
library and J Optimizer configuration file specify what types of data are collected during the
profiling session. Required for JDK 1.5 and earlier when using JVMPI.
Note: Do not specify the file extension in the argument for the Agent library. That is, specify
-Xrunoii or -Xrunpri instead of -Xrunoii.dll or -Xrunpri.dll .

-agentlib:<J Optimizer_Agent>
=<path_to_J Optimizer_xml>

For JDK 1.5 and newer VMs. This argument specifies the name of the J Optimizer Agent
shared library and the path to the J Optimizer configuration file. The J Optimizer Agent shared
library and J Optimizer configuration file specify what types of data are collected during the
profiling session. Required for JDK 1.5 and later when using JVMTI.

-Xbootclasspath/p:
<J Optimizer_install_path>/lib/oibcp.jar

Specifies a list of directories or JAR files to search for boot class files. Specifically, this option
is used to add oibcp.jar to the BOOTCLASSPATH. The /p specifies that oibcp.jar is
prepended to (added to the beginning of) the BOOTCLASSPATH.

-classpath
<J Optimizer_install_path>/lib/optit.jar

Specifies a list of directories or JAR files to search for class files. Specifically, this option is
used to add optit.jar to the CLASSPATH. Note: If the CLASSPATH environment variable
already includes optit.jar, this option is not required.

How to Use the J Optimizer Library Files
A key component in the startup argument is the J Optimizer Agent shared library you specify. The optit.jar file, located in the J
Optimizer-agent directory, contains five library files. Of these, the generic library enables use of all the J Optimizer profiling tools, while each
of the other four library files launch only one specific profiling tool. The following table describes the purpose of each library.

Library Name Library Purpose

oii Generic library. This library enables use of all the J Optimizer profiling tools. You
use this library in conjunction with the J Optimizer Tool Selector. Specifically, you
use the Tool Selector to select the tool, then launch the command.

pri Used to launch only the Memory and CPU Profiler.

tdi Used to launch only the Thread Debugger tool.

cci Used to launch only the Code Coverage tool.

j2idev Used to launch only the Request Analyzer tool.

In most cases, we recommend specifying the generic J Optimizer Agent shared library, oii, instead of a tool-specific one, such as tdi
(which launches the Thread Debugger). The generic library works in conjunction with the J Optimizer Tool Selector, which allows you to
select the profiling tool you want to use before you launch the startup command.. This means that you need only to specify the generic library
once in the command that runs the batch file. When you specify an individual library file in a startup argument, you must alter the batch file
each time you want to run a different tool.

Note: The complete name of each library varies by operating system. For example, on Windows, the generic library file is called oii.dll and
the Code Coverage file is called cci.dll. On Linux and Solaris systems, the same library files are called liboii.so and libcci.so.
When you call a library file in a command, you need only use the name of the library as it is presented in the table above. Sample startup
arguments are provided later in this Help page.

Running the Tool Selector
Before using the generic library in a command, you must run the J Optimizer Tool Selector. This is quickly done using the oiselector

32 of 40 Copyright Embarcadero Technologies, Inc.

executable. You need only run the tool selector executable once. After installing the selector, you use it to select the profiling tool you want to
use, then launch the start-up command that specifies the generic library. This immediately starts your application and the profiling tool. When
you want to use a different tool to profile an application on the same machine, use the Tool Selector to select it, you can again launch the
same command.

For instructions on how to run the tool selector on Windows, Linux, Mac, and Solaris machines, click here.

IMPORTANT: You do not need to run or use the tool selector if your startup command specifies an indvidual tool, such as pri for the
Memory or CPU profiler or j2idev for the Request Analyzer.

Sample Startup Arguments
When using JDK 1.5 or earlier, a startup argument using the generic library might look like the following:

java -Xrunoii:"C:\test_dir\j_optimizer.xml"
 -Xbootclasspath/p:"<J Optimizer_install_path>\lib\oibcp.jar"
 -classpath "<J Optimizer_install_path>\lib\optit.jar" YourJavaApp

The argument above starts both the Java application you specified ("YourJavaApp") and the profiling tool you selected using the J Optimizer
Tool Selector.

Using a similar JDK, a startup argument using the Request Analyzer library file to launch the Request Analyzer might look like the following:

java -Xrunj2idev:"C:\test_dir\j_optimizer.xml"
 -Xbootclasspath/p:"<J Optimizer_install_path>\lib\oibcp.jar"
 -classpath "<J Optimizer_install_path>\lib\optit.jar" YourJavaApp

The argument above launches both the Request Analyzer and the Java program you specified ("YourJavaApp").

Note: When using the Sun Hotspot JDK, J Optimizer may require you to start your application with the -XX:MaxPermSize option. This option
sets the permanent generation size of the virtual machine. For example, -XX:MaxPermSize=64M sets the permanent generation size to
64MB. If your application throws OutOfMemoryErrors when running with J Optimizer, it may be that the virtual machine is running out of
permanent space, which is used to store classes. Use the -XX:MaxPermSize option to increase the permanent space. If you still
experience problems, you can increase the Java heap size with the -Xmx option, which sets the maximum value of the Java Heap. For
example, -Xmx256M allows the Java Heap size to grow to a maximum of 256MB.

Related Topics
Setting Environment Variables
About Editing the J Optimizer Configuration File
Attaching to the UI to View Profiling Results

7.4. Setting up the Tool Selector
Before using the generic J Optimizer Agent shared library file (oii) in startup command, you must run the J Optimizer Tool Selector
executable to enable tool selection. You need run this executable only once. After running the selector, you use it to select the profiling tool
you want to use, then launch the startup command that specifies the generic library. This immediately starts your application and the profiling
tool. When you want to use a different tool to profile an application on the same machine, use the Tool Selector to select it, then launch same
command to start profiling.

Note: The tool specified with the Tool Selector is stored in a file located under the home directory of the current user. Run the oiselector
command as the user who runs the application or server. Selections made with the J Optimizer Tool Selector have no affect on profiling
sessions started from J Optimizer UI.

To run the tool selector and select a tool on a Windows machine:

JBuilder must be installed and the JBuilder UI opened at least once to create the joptimizer-agent directory on a Windows machine.

Ensure that the J Optimizer tool you want to select is not running.1.
Double-click oiselector.exe in the <JBuilder2008>\joptimizer-agent\bin directory to start the J Optimizer Tool
Selector.

An icon for the J Optimizer Tool Selector appears in the system tray. This icon indicates which tool is currently selected.

The J Optimizer Tool Selector runs in the background.

2.

Right-click the J Optimizer Tool Selector icon in the Windows system tray, and choose a tool from the context menu3.

 When you have selected the tool, you can start your remote or offline profiling session.4.

33 of 40 Copyright Embarcadero Technologies, Inc.

Note: If you select None for the tool, then the next time you start your application server, J Optimizer will be disabled. This is particularly useful
when you have configured J Optimizer with an application server started from an administrative console. This lets you enable and disable J
Optimizer without changing the application server configuration.

To run the tool selector and select a tool on a Linux, Mac, or Solaris machine:

JBuilder must be installed and the JBuilder UI opened at least once to create the joptimizer-agent directory on Linux and Mac machines. A
Solaris machine needs only J Optimizer-agent folder.

Ensure the J Optimizer tool you want to select is not running.1.
Enter oiselector –status in the {J Optimizer}/bin directory to see which tool is currently selected.2.
Enter oiselector –config to start an interactive configuration routine that lets you select the tool.3.
Enter the letter that corresponds to the tool you want to select.4.

 When you have selected the tool, you can start your remote profiling session.5.

Tip: Enter oiselector.sh –help for a list of Tool (also referred to as" Agent") Selector command-line options and their descriptions.

Related Topics
About Profiling from a Command Line
Selecting and Issuing a Startup Argument
Attaching to the J Optimizer UI to View Profiling Results

7.5. Attaching to the UI to View Profiling Data
To view the data collected by a profiling tool, you must attach to the J Optimizer user interface. This Help page provides instructions on
how to do so.

IMPORTANT: If you are using J Optimizer as a JBuilder plug-in, you can attach using a socket connection or a TPTP connection. The default
connection type for J Optimizer is socket. If you are using Stand-alone or Touchpoint J Optimizer, you can only use a socket connection.

Attaching with a Socket Connection
The J Optimizer profiler runs in the agent port that you specify. If you do not specify a port, the profiler defaults to 1470.

To attach to the J Optimizer agent using a socket connection:

Open a Profile Configuration Wizard.1.
Click Attach - J/Optimizer Agent.2.
Click the New button in the toolbar to create a new attach configuration.3.
On the Host tab, select Attach to J/Optimizer agent directly.4.
Select the Profiler Type to match the tool that you started your target application with using the oiselector tool on Solaris. 5.
Enter the IP Address/Hostname of the remote machine.6.

Enter the port that was used by the J Optimizer Agent. The following table displays the range of port numbers available for each tool.

Port Number Profiling Tool

1470 to 1480 Profiler (Memory and CPU)

1471 to 1481 Thread Debugger

1472 to 1482 Code Coverage

1473 to 1483 Request Analyzer

7.

Click on Apply and Profile. Use one of the J Optimizer views associated with the profiling tool you used to view profiling results.8.

Attaching with a TPTP Connection
Before attaching, make sure you have configured your TPTP connection to work with J Optimizer.

To attach to the J Optimizer interface using a TPTP connection:

In the J Optimizer user interface, open the Profile Configuration Wizard. 1.
In the left pane, select Attach - J Optimizer Agent and create a New configuration. 2.
In the right pane, on the Host tab, select Use Agent Controller to attach to J Optimizer agent.3.
Click on the Agents tab. 4.

34 of 40 Copyright Embarcadero Technologies, Inc.

Click Refresh Data to display a list of available agents. Select the agent you want to use and move it to the Selected Agents
section.

5.

Click Apply to save your selections, and Profile to start profiling.6.
Use one of the J Optimizer views associated with the profiling tool you used to view profiling results.7.

Related Topics
About Profiling from a Command Line

8. Overview of Application Server Integration
To profile an application running on an application server, you must first integrate J Optimizer with the application server. Integration
ensures that the application server and J Optimizer run in the same virtual machine, and enables J Optimizer to capture and record
information about the classes and methods loaded by applications running on the application server. Some configuration of J Optimizer is
also performed as part of the ntegration process.

J Optimizer provides automated wizards which create or modify the startup scripts and configuration files required during the integration
process. To profile an application server on a Windows, Linux, or Mac machine, you use an agent configuration wizard from within the J
Optimizer UI. To profile an application server on a Solaris machine, you launch a specially designed text-based integration wizard from a
command line. For instructions on how to use each wizard to profile an application server, click here.

Related Topics
How to Profile an Application Server
About Profiling From a Command Line

8.1. Profiling an Application Server
To profile an application server on a Windows, Linux, or Mac machine, you use an agent configuration wizard from within the J Optimizer
UI. The agent configuration wizard creates a profile configuration for your application server, and integrates the server with J Optimizer. To
profile an application server on a Solaris machine, you launch a specially designed text-based integration wizard from a command line. Once
profiling completes, you can manually attach to the J Optimizer UI to view profiling results.

For an overview of how the J Optimizer wizards perform integration tasks, click here.

Note: If you want to change profiling options for any of the tools, be sure to do so before starting the procedures on this page. You can change
profiling options in the optimizeit.xml file. Both of the wizards discussed on this page use information from that file during the
integration process. For instructions on how to edit the optimizeit.xml file, click here.

Profiling an Application Server from the UI
To create an application server profile configuration from the UI:

Open Window>Preferences.1.
Navigate to J Optimizer>Agent Configuration.2.
In the right pane of the Agent Configuration window, click Add to add a new agent configuration.3.
On the Add J Optimizer Agent Configuration window, select the application server and version you want to profile. Then click Next.4.
Browse to and select the application server's home directory, then click Next. 5.
The page that appears next depends on the type of application server you selected in Step 3. Skip or change this page as needed,
then click Next.

6.

On the J Optimizer Configuration page, select the Profiling Type (i.e. profiling tool) you want to use, then click Edit Options to
configure the tool's settings, if desired.

7.

Click Next. Review the Integration Summary page and click Integrate.8.

To start the Application Server:

In the right pane of the Agent Configuration window, click Start. The application server is now running with the J Optimizer agent
inside it.

1.

Click OK and look at the Console to watch application server output.2.
If you are using a socket connection, verify that the correct port number appears for the profiling tool you selected. The following table
specifies the port range available for each tool.

3.

Port Number Profiling Tool

35 of 40 Copyright Embarcadero Technologies, Inc.

1470 to 1480 Profiler (Memory and CPU)

1471 to 1481 Thread Debugger

1472 to 1482 Code Coverage

1473 to 1483 Request Analyzer

You are now ready to attach to J Optimizer to view profiling results. For instructions on how to do so, using either a socket or a TPTP
connection, click here.

Profiling an Application Server on Solaris
J Optimizer has designed a text-based integration wizard for use on Solaris machines. The text wizard displays numeric choices that
represent each of the application servers J Optimizer supports. For example, 1 = Application Geronimo, 2 = Geronimo 1.1, 5 = JBoss 4.2,
11 = Sun Java AppServer 8.2, and so on for all of the supported servers. The text wizard also displays numeric choices for the J Optimizer
profiling tools. For example, 1 for Profiler, or 4 for Request Analyzer.

The text-based integration wizard produces a script that you run when you want to start profiling the application server with a J Optimizer
tool.

To profile an application server on Solaris:

Run the integWizard.sh file, which is located in the joptimizer-agent/bin directory.1.
When the integration text wizard options appear, select the number that corresponds to the application server that you want to
integrate, then press Enter.

2.

The next few steps vary slightly, depending on the type of application server you selected in Step 2. Generally speaking, you will be
asked to provide the installation directory of the server.

3.

After identifying the installation directory, select the number that represents the J Optimizer profiling tool you want to use. Then
press Enter.

4.

The wizard displays an Integration Summary of your selections; click Next to continue or Back to change your selections.5.
A message indicates that the integration is in progress. When it completes, click Finish. J Optimizer generates an integration script
and locates it in the installation directory.

6.

Run the newly created integrated script. J Optimizer starts profiling with the tool you selected.7.

You are now ready to attach to J Optimizer to view profiling results. For instructions on how to do so, using either a socket or a TPTP
connection, click here.

Related Topics
About Application Server Integration
About Using the J Optimizer Data Views

9. Viewing and Using Data Collected by J Optimizer
The J Optimizer UI provides a variety of methods for viewing the data collected by its profiling tools. A short description of each method is
provided below. For more detailed information about each methods, click on the highlighted links.

Data Views: J Optimizer provides a number of application pages, called "views," that display data collected by the four profiling tools.

Snapshots: Snapshots are binary files that capture all the data from a particular test run. Snapshots can be opened for analysis in the
product that generated it, such as J Optimizer Profiler, J Optimizer Code Coverage, or J Optimizer Request Analyzer.

Virtual Machine Metrics: Use the Metrics view to view the data collected by the CPU and Memory Profiler and the Request Analyzer.

Reports: Reports that display data collected by the Memory and CPU Profiler and Request Analyzer can be generated from live data
or a snapshot.

Data Exports: You can export the data that appears in a current, open data view in an HTML or ASCII file.

Console Output: Use this printout to browse messages from the test program or to see errors if the Java program does not start.

9.1. About Data Views
J Optimizer provides a number of ways to view the data collected by each tool. The first time you open the J Optimizer perspective, you'll
see the default views: Memory, Memory Leak Detector, CPU, Class Coverage, Threads, and JEE Components. You can close these
views, reopen them, and add additional views that were designed to work with the J Optimizer tools. The additional views include graphs that
display Execution Flow, and Allocation and Thread Backtrace information. The views that are available for each tool are discussed in the
following sections.

36 of 40 Copyright Embarcadero Technologies, Inc.

How to Access Views from the Window menu
Each view appears as a separate tab on the right side of your workspace. When a tool stops running, click on one of the view tabs to see
the data the tool collected. For example, after running the memory profiler, you can click on the Memory or Memory Leak Detector tab to
see memory data.

When you open J Optimizer, the views displayed are the views that were open during your last session. To close a view tab, click on the X in
the right corner of the tab.

To reopen a view that you closed:

Open the Window menu and scroll down to Show View. A list of views appears, as shown below.1.

Select a view to open it as a tab in your workspace.2.

To see and select one of the additional views that are available:

Open the Window menu and scroll down to Show Views.1.
Select Other. A new Show Views window appears.2.
Scroll down the list and double-click on the J/Optimizer folder. A list of views appears.3.
Double-click on a view to display it as a view tab in your workspace.4.

Using the Profiling Monitor to Access a View
When you click on a process in the Profiling Monitor, you can see which data views are available for that process and display it in the views
area. The views available for a process are determined by the tool you selected to profile it. To view and toggle to a view in the Profiling
Monitor:

Right-click on a process and select Optimizeit from the context menu.1.
A list of available views appears. Select a view, and it will appear in the view area with the other view tabs.2.

Memory and CPU Profiler Views
The following views display CPU and Memory data:

The CPU Activities view displays CPU utilization grouped by thread, during a specified recording interval.

The Memory Allocation view displays the breakdown of the test application's Object Allocation. Click on a line in the graph to drill
down to specific lines of code.

The Memory Leak Detector view allows you to take heap snapshots of the application, which you can compare in order to find
potential memory leaks.

The Object Graph view displays the entire contents of the heap so you can view the hierarchy of objects such as busy monitors,
variables, constants, and Java threads.

The Application Quality Analyzer view displays a count of errors that occur during a profile session. Errors can occur when: VM
pauses due to Garbage Collection exceed a specified threshold; object containers (such as StringBuffers or Byte-Arrays) exceed a

37 of 40 Copyright Embarcadero Technologies, Inc.

specified size; or when file descriptors are not closed.

Use the Metrics view to detect signs of application problems in the following areas: Java Heap, Class Count, Thread Count, and
Garbage Collection.

Code Coverage Tool Views
The Class Coverage view displays the lines of code per class that are covered during a profile session. Click on a line to drill down to the
lines of code covered per method.

Thread Debugger Tool Views
The following views display Thread Debugger data:

The Threads view displays the state of each thread during a profile session.

The Monitor view identifies the locking situation of each thread during a profile session.

The Lock Analyzer view identifies potential thread locking issues that may occur during a specified recording interval.

Request Analyzer Tool Views
The following views display Request Analyzer data:

The JEE System Dashboard view displays a high-level view of JEE application performance.

The JEE Component Performance view identifies all of the JEE events in your application, in real time, during the profile session.
Provides a broad overview of the application time spent in JEE components.

The JEE Application Quality Analyzer view displays a count of errors that occur during a profile session, such as exceptions thrown
or when component-specific resources are not released.

9.2. Snapshots
Snapshots are binary files that capture data from a particular profiling session. You can generate snapshots in two ways: manually during a
profiling session, or setting up the J Optimizer auto-capture option to capture data snapshots at timed intervals during a profiling session.
You can manually generate snapshots when using the memory and CPU profiler and the Code Coverage and Request Analyzer tools. You
can use the auto-capture options with the memory and CPU profiler and the Request Analyzer.

You can view open snapshots in the data view area of the J Optimizer UI.

Note: Snaphots are not backwards compatible. You cannot view snapshots produced in previous versions of J Optimizer.

To get the most from your snapshots, use the following best practices:

Be specific: snapshots contain a lot of data. For accurate diagnostics, try to capture the snapshot at the specific point in the testing
session that the application exhibits the performance problem.

Capture baseline data: often, problems appear unexpectedly; for this reason, it is a good idea to generate and store baseline
snapshots. Snapshot generation can be integrated into nightly builds to maintain a data trail. Baseline snapshots can be especially
useful for comparing snapshots.

Document your snapshots: the better you document snapshots, the easier it will be to retrieve data. When using the Generate
Snapshot dialog box, specify a name that helps indicate the situation or conditions of the testing session, append the date and time
stamp to the generated file, and enter comments.

9.3. About Collecting Virtual Machine Metrics
The Virtual Machine (VM) Metrics analyzer returns high-level, performance-related data about the program you are profiling. The Metrics
view can help determine if a performance problem is related to CPU, memory, or both.

You can instruct J Optimizer to collect VM Metrics when you run the Memory or CPU Profiler, or the Request Analyzer. You specify
Metrics data collection options when you create a Memory, CPU, or Request Analyzer profile configuration. Links to information about
creating Memory, CPU, and Request Analyzer profile configurations are provided in the Related Topics section of this Help page.

Loaded Classes
The Class Count graph shows the number of classes currently loaded in the VM. This is a count of distinctly loaded classes, not necessarily

38 of 40 Copyright Embarcadero Technologies, Inc.

a reflection of current instance allocations. This information provides some insight into how and when classes are loaded as your program
runs. For example, many applications load many JARs of classes at the time they start. Memory problems may result if the number of
classes loaded continues to increase. A custom class loader may provide the ability to unload unnecessary classes to free memory.

Heap Size
Heap size is the amount of memory required to allocate Java objects. It does not include any memory allocated by the VM or by native code
used by your program, classes, any thread stacks (both Java and native), or memory overhead caused by J Optimizer. The Java Heap
graph plots the total heap size in the VM and the amount of heap your application is using. This information can help explain performance
problems associated with garbage collection. For example, the heap size for your VM can significantly affect overall system performance. If
the heap size is too large, garbage collection may occur less frequently, but full garbage collection may be very slow. If the heap size is too
small, and your VM runs out of heap memory, all program execution in the VM stops until space can be freed by garbage collection.

Active Threads
The Thread Count graph shows the current number of threads running in green and the number of threads actually using some CPU
resources in blue. Use this information to quickly determine whether enough threads are allocated to perform the tasks required by the test
program. In general, the number of threads should match the associated application activity.

Garbage Collection
The Garbage Collection Information graph shows the garbage collector activity, which is the time spent garbage collecting divided by total
time.

Related Topics
Configuring VM Metrics

9.4. Reports
The reports generated by J Optimizer tools help you share application performance data in a standard format. The data format in which
reports can be generated depends on which tool you are using. Reports can be generated from live data or a snapshot.

The following J Optimizer tools can generate reports:

Profiler

Code Coverage

J Optimizer Profiler Reporting Features
J Optimizer Profiler generates reports as portable document format (PDF) files. The contents of the reports are based on the contents and
selection in the current view. For example, if you generate a report for the Heap view, the report will reflect the column order and row
selection made in the view. Reports can be generated for the following views:

Heap view (classes loaded during testing session, and associated number of instances allocated)

Allocation Backtraces view (data to help identify the code responsible for specific allocations)

Quality Analyzer view (errors, warnings, and exceptions captured by the Application Quality Analyzer)

J Optimizer Code Coverage Reporting Features
J Optimizer Code Coverage generates reports as HTML or ASCII files for the current test run. The contents of J Optimizer Code Coverage
reports are not based upon the content or selection in the current view. Reports can be generated from within the user interface or from the
command line. At the command line, you can generate a report from a testing snapshot using the ReportGenerator class.

9.5. Exporting data
You can export the data collected by J Optimizer into an HTML, XML, or CSV file. After exporting the data into an HTML, XML, or CSV file,
you can open it in any text viewer or browser to be printed, compared, or archived. J Optimizer provides two methods of export, both of
which are explained on this Help page.

Note: Only views with non-graphical information support data export. You cannot export the contents of the Aggregated View - Graph display
option found in the CPU Profiler view, the Memory Leak Detector view, and the Allocation Backtrace view. To capture the information in

39 of 40 Copyright Embarcadero Technologies, Inc.

these views, use the Hierarchical View - Tree display option.

Exporting Data from a View Tab
To export the contents of a view:

Click the Export Data icon on the view tab toolbar.
Note: For views that do not allow export, this option is disabled.

The Export Report dialog box opens.

1.

Choose a format for the exported view, and then click Next.

Select HTML to produce an HTML document that presents data in the same format as J Optimizer displays it.

Select XML to import this data into another application.

Select CSV for a more compact file.

2.

Select or enter the path of the folder where you want to save the file.3.
Enter the name of the file.4.
Click Finish to export the data.5.

After exporting the data into the specified file, J Optimizer opens the file with your default editor or web browser.

Setting Up Data Export From a Profile Configuration
The Profile Configuration Wizard for each profiling tool provides an Export option that allows you to specify a file type (CVS, HTML, XML)
in which to export collected data collected. For more information, use the J Optimizer Help Table of Contents (TOC) to locate instructions for
the profile configuration you want to use. For example, go to the "Using the Memory Profiler" section of the Help for instructions on creating a
memory profile configuration.

9.6. Console Output
J Optimizer Profiler and J Optimizer Code Coverage both have the ability to display console messages. The Console button prints Agent
messages as well as the test program standard output and standard error messages. Use this printout to browse messages from the test
program or to see errors if the Java program does not start.

If you select Open A Console in the Settings dialog box when you begin your test, the standard output and the standard errors of the test
program will not be redirected to the J Optimizer console.

40 of 40 Copyright Embarcadero Technologies, Inc.

	J_opti_front_matter_template
	J Optimizer Online Help.pdf

